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MODULE-I 

Elements of an Electrical Communication System 

 

 Information is obtained from real life signals through the use of transducers. For example, 
speech is converted into a corresponding electrical signal by a microphone and moving 
picture signals are converted into the appropriate electrical signals by various cameras.  The 
information so obtained is called a signal that becomes a function of time which is usually 
analog in nature. Signals may be described in time domain or in frequency domain. The 
frequency domain description of a signal is known as spectrum that would be covered 
subsequently. Data generated by the keystroke of a computer become the information when 
communication is made through e-mail. 

The transmitter may operate in a point-to-point mode or in a broadcast mode wherein there is 
a number of receivers corresponding to a single transmitter. It may be wired, wireless. The 
transmitter may also operate at different power levels depending upon the application, range 
of service and type of service. We get three distinct types of transmitters: simplex, half 
duplex and full duplex. The broadcast transmitters usually meant for entertainment purpose 
are simplex type as information flow is unidirectional. The receiver can not communicate 
back to the transmitter. In half duplex system, information can flow between the transmitter 
and the receiver in one direction only at a time, but not simultaneously. The walkie-talkie is 
an example of simplex type of communication. The telephone provides an example of a full 
duplex type of communication. 

The channel may be modelled as 

 Additive noise type: the channel introduces noise that is added to the transmitted 
signal (satellite channels) 

Information 
Source 

Transmitter Channel Receiver Information 
Sink 

Speech, Music, 

Image, Video, 
Instrumentation and 
measurement signals, 
EEG, ECG, Seismic, 
meteorological signals, 
Data etc 

(Transducers required) 

Analog 

 (Point-to-point, 
broadcast), Low  
Power, Medium 
Power, High 
Power, Digital 

Additive,  

Linear Time 
Invariant, Linear 
Time varying, 
Band limited, 
Power limited 

Analog 
Digital 

Transducers  

(Speaker, Picture 
tube etc) 



 

 
 Linear time invariant (LTI) type: the channel behaves as a linear filter whose 

impulse response (or alternatively the transfer function) does not vary with respect 
to time. The transmitted signal is convolved with the impulse response to produce 
the channel output. (Leased land line telephone lines or simply the telephone 
channel) 

 
 Linear time varying (LTV) type: The channel again, here behaves as a linear filter. 

However, unlike the LTI channel, the impulse response of the channel varies with 
respect to time. The channel output is observed to be a convolution of the 
transmitted signal and the time varying impulse response. Cellular channels 
provide a bright example of this kind of channel. 
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The receiver’s function is to retrieve the original transmitted signal from noisy, distorted 
signals that arrive at its input. An analog receiver is entrusted with the task of replicating the 
original waveform from its noise corrupt and channel induced distorted versions. A digital 
receiver makes a decision (within a sampling interval) as to “which one out of M number of 
symbols”. 

 
Performance metric of receivers: 

 
Signal to noise ratio (SNR) at receiver output fort the analog one 
Probability of bit error or 
Mean square error (MSE) for the digital type. 

The sink is usually a speaker that reproduces speech signals from the corresponding electrical 
output or a picture tube that reproduces the picture. It may be a computer also that is intended 
to receive an e-mail. 

Electromagnetic Spectrum 

Table No. 1.1 Allocation of frequencies for existing applications 

S 
No 

Frequency 
Range 

Nomenclature Application/Usage 

1 30 Hz- 300 Hz Extremely low frequencies 
(ELF) 

Underwater Communication 

2 300 Hz- 3. 0 KHz Voice Frequency (VF) Telephone 
3 3.0 KHz – 30 KHz Very low frequencies (VLF) Navigation 
4 30 KHz- 300 KHz Low Frequency (LF) Radio navigation 
5 300 KHz - 3 MHz Medium Frequencies (MF) AM radio broadcasting 
6 3 MHz-  30 MHz High Frequencies (HF) AM, Amateur radio, mobile 
7 30 MHz – 300 

MHz 
Very High Frequencies 
(VHF) 

TV, FM, Mobile communications 

8 300 MHz- 3 GHz Ultra High Frequencies 
(UHF) 

TV, radar, satellite communications 

9 3 GHz- 30 GHz  Super High Frequencies 
(SHF) 

Terrestrial microwave and satellite 
communications 

10 105 GHz – 106 
GHz 

Optical Frequencies Optical communication 

 

Signal Analysis: Fourier Series  

A signal is periodic if it repeats itself after a certain time;    Ttxtx   where T  is its period. 
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Two signals  tx1  and  tx2  are said to be orthogonal over a period T if their inner product is zero; 

    0
0 21 
T

dttxtx  for the case when the signals are real valued functions.  

For example: tfV 02sin  and tfV 02cos  , tmfV 02sin  , tnfV 02sin   are orthogonal to each other 

over the period T  

The fundamental frequency is expressed as 
T

f
1

0   

• The signal must satisfy a set of conditions known as ‘Dirichlet’s conditions’ 

• These ae 

• A) The signal is absolutely summable over its period  
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Fourier transform of a function is evaluated as 
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Proof: 
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This is because   0 tu  for t . 

Q.2.  Find the spectrum for a signal defined as 

  tftftv 21 2cos2sin   



Soln: The signal is         tfftfftftftv 212121 2sin2sin
2

1
2cos2sin    

The spectrum corresponding to the first term is 
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1
ffffff

j
   

The spectrum corresponding to the first term is 
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Q.3. Find the spectrum of a signal defined as 
 

dt

tdg
t  

Soln: We know that 

The function    fGtg  , then    ffGjtg
dt

d 2  and similarly, 

     tgtjfG
df

d 2  

Let us differentiate the function      tgtjtg 21   once more with respect to time. Hence, we 

obtain 
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From the linearity property of the Fourier transform operator, we have, corresponding to the second 
term of the expression, 

   fGjtgj  22   (Multiplying 2j  to both sides ) 

Thus, the Fourier transform of the function 
 
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tdg
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Q.4 Find the Fourier transform of a function given as      tfttx 22   

From the frequency differentiation property of the Fourier transform, we have 
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Q.4 Find the Fourier transform of a signal given as 

 
dt

dx
tty   

Soln: Differentiating a function like  ttx  in the time domain, we have 
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From the above, we note that, 
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However, from the linearity principle, the time differentiated function has two parts; the transform 

corresponding to  ty  and the other corresponding to  tx .  Therefore, 
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Q.5 Find the Fourier transform of a signal defined as 

   txty  1  

Soln:       11  txtxty  



We know that, for 
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This is because 
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Q.6 Find the Fourier transform of a signal given as 

     txtty  11  

Soln: As in the previous problem, 
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From the linearity property of the Fourier transform, we have 
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The impulse has no mathematical or physical meaning unless it appears under the operation of 
integration. Two of the most significant integration properties are 

I. Replication property  

     00 ttxtttx    

To prove this, we write 
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We know that,    attains a value of 1 at 0 . Therefore, 
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This is known as replication property. 

II. Sampling property 

We also have, 
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Hence the above integral becomes 
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We know that,    attains a value of 1 at 0 . Therefore, the above integral has just one value 

that is nonzero occurring at 0  and this value is given as 

 0tx  

This completes the proof. 

III. 

Further, we have 

       000 tttxtttx    

This is because the impulse function has a value of 1 at 0tt   . Hence, only one value of the function 

 tx   is retained which occurs at 0tt  . 
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IV.      00 ttxtttx   

To prove this, we write 
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Substitution of the above in the integral gives us 
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This is because the impulse function has a value of 1 at 0tt  . From the previous problem we get 

this. 
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A little extension of the this result as applied to impulse functions give us 

VI.      2121 TTtTtTt    

Soln: Let us prove this using the Fourier transform properties. 

We know that, 
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Prove the duality theorem of Fourier transform which states that if    fXtx  , then 

   fxtX   

Proof:  

     




 dfftjfXtx 2exp  

Hence, 

     




 dfftjfXtx 2exp  

Let us  interchange the roles of frequency and time in the above expression 

Therefore, 

        

   fxtX

tXdtftjtXfx



 




2exp
 

Find out the Fourier transform of  tx  . 

Soln: We know that, 
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Table 1.2 Some commonly used functions and their Fourier transforms 
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Prove the 7th entry of Table 1.1 from the appropriate property of the Fourier transform. 

Soln:  The appropriate property that we use to prove this is the frequency domain differentiation 
which is 
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This completes the proof. 

Prove the 9th entry of Table 1.1 using appropriate properties of Fourier transform 

Soln: We make use of the previous result.  The function under consideration may be expressed as 
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Let us combine the Fourier transforms of the two functions 
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Prove the 12th entry of Table 1.1. 

Soln: The Fourier coefficient of this function is defined as 
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Hence, the Fourier series of an impulse train is expressed as 
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From the 11th entry of this table, we note that 
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Therefore, the Fourier series corresponding to an impulse train is expressed as 
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The Fourier series of some commonly used waveforms 

1. Half wave rectified sine wave of amplitude A  volt 

 

  tn
n

t
AA

tttttAtx

m

n



















cos
1

2
sin

2

8cos
63

2
6cos

35

2
4cos

15

2
2cos

3

2
sin

2

11

2

2

2 















 




 

2. Full wave rectified sine wave of peak amplitude A  volt 
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3. Rectangular or square wave of peak to peak amplitude A2  volt 
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4. Triangular wave 
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Fig.5 
 
The waveform is expressed as 
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This function exhibits odd symmetry. Hence it contains the sine terms only. The coefficient 

nb  is evaluated as 
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Let us evaluate the above coefficient term by term. The first term gives us 
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The second integral becomes 
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The third integral becomes 
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The fourth integral is 
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The fifth integral becomes 
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Combining all the terms, we obtain 
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For values of mn 2  being even, the terms 
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We note that, if 1n , the above term is 
22

8

n

A


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. Hence the series amplitudes become alternately positive and negative 

and vary at the rate of 
2

1

n
. 

Thus, the Fourier series expansion of the triangular waveform as shown in Fig.5 is 
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For  the above triangular pulse, the Fourier series is obtained by noting that it can be 
obtained from Fig. 5 by shifting it by half a period. 
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7. Full wave rectified triangular wave 
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This waveform exhibits even symmetry. This has an average value given as 
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The waveform is expressed as 
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The corresponding integrals become 
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The second integral becomes 
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The third integral becomes 
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Hence, the Fourier series becomes 
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8. Trapezoidal waveform 
The waveform is expressed as 
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The first integral is 
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The second integral is 
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The third integral is 
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We note that, the term 
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The fourth integral is 
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Combining all the terms, we have 
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If we combine all the cosine terms, the result is zero. 
The desired Fourier series is 
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9. A periodic impulse sequence (Impulse train) 
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As the delta function train is an even function of time, the coefficient nb  is zero. 

The Fourier series corresponding to such an impulse train is expressed as 
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The generalized Fourier series of any arbitrary periodic signal is expressed as 
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Here, we define just one period of the wave given as 
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Any arbitrary periodic signal may be expressed as 
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Taking the Fourier transform of both the sides, we have 
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Comparing the two results, we have 
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Hence, the generalized Fourier series of any arbitrary periodic signal is expressed as, using this result 
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Taking the Fourier transform of both the sides, we have 
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For the sampled signal case, when nTt  , we have 

     nTnTxnTx T   
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
n

T
n

nTttxnTtxtx   

Taking the Fourier transform of both the sides, 
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We note that, 
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Q. Find the spectrum of a full wave rectified sine wave from fundamentals. 

  A sampled signal is expressed as 
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If we compare both the sides of the transform, we note that, 
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 Find out the Fourier transform of a Gaussian pulse given as 

   2exp ttx       

Soln: The Fourier transform is expressed as 

     
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By adding and subtracting a term like 2f  to the argument of the exponential function     



    

    














dtjftf

dtffftjtfX

22

222

expexp

2exp




      

Let 
 

dudt

ujft








 

Substituting this in the above, we get 
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Inference: The spectrum of a Gaussian pulse is also another Gaussian pulse 

Second Method: 

This can also be derived by another method. 

Frequency domain differentiation of a given signal gives us 

   
   ttxj
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fdX

fXtx

2


 

Suppose, we have a signal that is described by a first order differential equation expressed as 

   ttx
dt

tdx 2  

Taking the transform of both the sides, we have 
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If  tx  is a continuous signal bandlimited to m  radians per second, then show that 

      txktctx
k

 sin


 for mk   

Proof: 
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 becomes in the frequency domain, 
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Taking the inverse transform we note that, in the range of kk   , the signal would be exactly 

equal to  tx  for a frequency range of mk  . 

We note that, in order to replicate the function  tx , the condition is that mk   otherwise for 

mk  , multiplication of the two functions in the frequency domain would result in spectrum 

mutilation of  fX   

Hence show that, 

      tctctc
k

mmm 


sinsinsin   for mn    

Proof: 

Use of the above result gives us 
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Taking the inverse transform of the above result we get 
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S 
No. 

Nomenclature Mathematical Description 

1 Linearity        fbXfaXtbxtax 2121   
2 Time Scaling   








a

f
X

a
atx

1
 

3 Duality If        fxtXthenfXtx   
4 Time Shifting      00 2exp ftjfXttx   

5 Frequency 
Shifting  
(Modulation 
Theorem) 

 
     cc ffXtfjtx 2exp  

6 Area under 
 tx     0Xdttx 





 



7 Area under 
 fX     0xdffX 





 

8 Time domain 
differentiation 

   ffXj
dt

tdx 2  

9 Time domain 
integration        f

X
fX

fj
dx

t





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10 Frequency 
domain 
differentiation 

   ttxj
df

fdX 2  

11 Complex 
conjugation 

   fXtx    

12 Re  tx      fXfX  

2

1
 

13 Im  tx      fXfX
j

 

2

1
 

14 Multiplication 
in time 
domain 

         dfXXtxtx 




 2121  

15 Time domain 
convolution        fXfXdtxtx 2121 





  

16 Parseval’s 
Theorem        









 dffYfXdttytx **  

17 Rayleigh’s 
Theorem    






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 dffxdttx
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18 Moments 
Property    
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Prove property 16 in table 1.3 

       
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
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Next we show the convolution of two rectangular pulses of different amplitudes and different 
durations. The result is observed to be a trapezoidal pulse having a duration equal to the sum 
of the durations of the individual pulses. 
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Objective: Fourier Transform of Periodic Signals 

We have a periodic signal    0Ttxtx   having a period 0T  that satisfies the Dirichlet’s 

conditions. As we have seen previously, this signal is expressed as a linear weighted 

combinations of its Fourier series coefficients  nx  as 
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Taking the Fourier transform of both the sides we get 
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  We observe the following from the above: 

 That  Fourier transform of a periodic signal  tx  consists of a sequence of 

impulses in frequency at multiples of the fundamental frequency of the periodic 
signal.  

 The weights of the impulses are just the Fourier series coefficients of the periodic 
signal 

 Thus we obtain a discrete or line spectrum corresponding to a periodic signal 

 Properties of Fourier transform would be utilized to compute the Fourier series 
coefficients as follows 
 

We define a truncated signal  txT0
 as 
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This only means that we are just considering one period of the signal and we have set other 
periods to zero. The periodic signal is restored by repeating this truncated signal with a period 

of 0T . Hence, we get back our signal as 
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Now, apply Fourier transform to both the sides.  
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Let us compare both the transforms. We can immediately see that 
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The following steps are followed to find out the Fourier series coefficients  nx : 

 Truncate the signal to just one period. 

 Determine the Fourier transform of this truncated signal. 

 Evaluate the Fourier transform of the truncated signal at a frequency 
0T

n
f   to obtain 

the n th harmonic and multiply it by 
0

1

T
 

Example: Find out the Fourier series coefficients of a triangular pulse train by this method. 
 
Soln: From Table 2.3, we note that the truncated triangular pulse has a Fourier transform 
given as  
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Multiplying  it by , 
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We observe from the above that, for a triangular wave, the Fourier series coefficients decay at 

the rate of 
2

0








T

n
and they are always positive. This is a faster decay as compared to a similar 

duration rectangular waveform. 
 
Objective: To learn power, energy and autocorrelation function of a given signal. 
 
The energy and power of a signal are representative of the energy or power delivered by the 
signal when the signal is interpreted as a voltage or current source feeding a 1Ω resistor. The 

energy content of a signal  tx , denoted by x  is defined as 

 
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2
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A signal is energy-type if  x  and is power-type if  xP0 . A signal can not be, 

therefore both an energy or a power type signal . For energy type signals, 0xP and for 

power type signals  x . Usually all periodic signals (with the exception of   0tx ) are 

power-type and have power 
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P




        

In the above, 0T  is the period of the signal and  is any arbitrary number.          

Example: Find out the average power in a periodic sine wave. 
 
Soln: Let the sine wave be represented as 

  ftVtx m 2sin  
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This is because  
T

ftdt
0

04cos   

Energy-type Signals 
The energy of a signal may be expressed as 



 




 dttxx

2
or  

 




 dffxx

2
 

This follows from the fact that the energy of a given signal can not be different whether it is 
computed in the time domain or in the frequency domain. The equality of the two above 
expressions is known as Rayleigh’s theorem. 
 

Example:  Find out the energy contained in a signal given as 
  tctx 10sin10  

Soln: It is easier to evaluate the energy in the frequency domain. The spectrum 

of this signal is     














101010

10
10sin10

tf
fXtctx  

This is a rectangular pulse in the frequency domain with unit amplitude and 
bandwidth of 10 units. 

Therefore,   







5

5

22
101 dfdffxx units 

Relation between convolution and autocorrelation of a given function  tx  
We may compute the autocorrelation of an energy-type signal as 

             

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




  dttxtxdttxtxxxRx  *  

This is a function of the lag  and also gives us the relationship between the autocorrelation 
and convolution of a given signal. As the signal is correlated with itself for different values of 
this lag parameter, it is known as autocorrelation. We are trying to find out the degree of 
similarity  between the original waveform and a delayed or advanced version of it. 
By setting 0  in the above, we obtain 
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2* 000  

Let us find out the time-average autocorrelation function and power spectral density of the 

power type signals. Let us assume that  tx  is a periodic signal with period 0T that has the 

Fourier series coefficients  nx . The time-average autocorrelation function for such a signal is 

defined as 
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These steps were followed to eliminate the limiting term and to express the autocorrelation 
function in terms of one period of the signal. The substitution of the Fourier series expansion 
in the above yields 
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We note that, the autocorrelation function of a periodic signal consists of discrete valued 
power components located at integral multiples of the fundamental. The power components 

are proportional to  
2

nx . Taking the Fourier transform of both the sides, we obtain 
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This  fS x  gives us the power spectral density of the periodic signal. Power spectral density 

means the distribution of power of the signal as a function of frequency.  
 

The total power content of the periodic signal is obtained by integrating  fS x  with respect 

to frequency . When this is done, the power becomes 







n

nx xP
2

  

This relation is known as  Rayleigh’s relation. 
 
 
 
 
 
 
 
 
 
 
 
 
 



MODULE-II 
 
AMPLITUDE MODULATION 

Modulation of a baseband signal may be viewed as a low pass to band pass conversion. This 
is usually accomplished by multiplication of the baseband signal with a periodic sinusoidal 
waveform of a frequency higher known as the carrier than that of the baseband signal. The 
baseband signal henceforth will be called the modulating signal. Multiplication of the 
modulating signal with a sinusoidal carrier in the time domain results in a shifting of the 
spectrum of the modulating signal in the frequency domain. Let the modulating signal be 

denoted as  tm  and the sinusoidal carrier be tA cc sin . Multiplication of the two in the time 

domain generates a signal  tvAM  expressed as 

    tAtmtv ccAM sin  

If the spectrum of  tm  be  fM , then the product signal  tvAM  has a spectrum given as 

      
cc

ffMffM
j

A
fV c

c
AM 

2
 

where j  is the complex number equal to 1 . The above expression is because of the fact 

that the spectrum of a pure sinusoid tcsin of frequency cf  consists of two impulses 

centered at cf  with amplitude
j2

1
. In a similar fashion, we note that multiplication of  tm  

with a carrier of the form  tA cc cos  gives us 

    tAtmtv ccAM cos  

The spectrum of this signal takes the form of 

      
cc

ffMffM
A

fV c
c

AM 
2

 

We observe that, the process of multiplication of  tm  with either tA cc sin  or  tA cc cos  

has given rise to two new frequency components in the spectrum of the output signal. These 

two frequencies cff   and ff c   are called the upper side band (USB) and the lower side 

band (LSB) respectively. The process of generation of these two side bands along with the 
carrier is known as double side band with carrier (DSB plus C). The expression for DSB with 
full carrier is  

        tAtmtAtmtmtv ccccCDSB  sin1sin   

 



As we may further observe, it can be generated by a multiplier and adder circuit. This is 
illustrated in Fig. L9.1. 

For example: 3L ,  and 7m  The terms 2)1( L . The pulse  kTtq   is present for the 

instants from 0to)2( . This lasts for, hence 3 symbol intervals. However, the shifted pulse 

 kTtq   lasts from 1k  to 437  Lmk th instant which has saturated  to ½ as 

the pulse at the 7th signalling interval may originate at this, may have the 6th pulse as its only 

or the 5th pulse may be the pulse two intervals earlier. Hence, all the values of   kTtq 
would have saturated to ½ from -2 to 4th signalling interval whereas the original pulse   

 

 

 

 

 

Fig. L 9.1 Conceptual generation of DSB with full carrier type of AM signal 

For a sinusoidal modulating signal, the instantaneous amplitude of the carrier becomes 

tVV mmc sin as the modulating signal sits atop the amplitude of the carrier. As we are 

interested in the instantaneous amplitude of the carrier as it should change in accordance with 
the amplitude of the modulating signal, the overall modulated signal looks like 

  tt
V

V
VtVtVtVtv cm

c

m
cmmccmmCDSB  sinsin1sin.sinsin 








  

We define the modulation index or the depth of modulation of this type of AM signal is 
defined as 

c

m
a V

V
m   

The ratio of the peak amplitudes of the carrier and the modulating signal and it has a 

maximum value of unity. Usually, the value of 1am , in order for an envelope detector to 

work at the receiver. If 1am , we understand it as 100% modulated signal and for a value of 

1am , we realize an overmodulated signal. For standard AM broadcast, the value of 

modulation index is 30%. Depending on the amplitude level of the modulating signal, a 
modulator may be a low level modulator or a high level modulator. A low level modulator 
may be constructed by injecting the modulating signal either to the base or the emitter of a 
transistor. Let us study such a modulator. 

x 
  mftm ,  

tV cc sin  

  tVtm cc sin  

Adder   tVtm cc sin1  



 is zero. 

 

 

 

 

 

 

 

 

 

 

 

Fig.L 9.2 A BJT amplifier with emitter modulation circuit to generate DSB plus C 

In Fig.L. 9.2, the dc bias condition is set up by the voltage divider 1R  and 2R , the emitter 

resistor eR , collector resistor cR  and the supply voltage ccV . The ac voltage gain of the BJT 

amplifier depends on its quiescent emitter current. As the modulating signal has been injected 
into the emitter, the instantaneous emitter current becomes 

tVKIi mmEE cos1  

where EI  is the quiescent value of the emitter current and 1K  is a constant. Amplitude 

modulation results if mVK1  is smaller than EI . As the voltage amplification is a function of 

the total emitter current, we get 

 tVKIKiKA mmEEv cos122   

where 2K  is another constant. The input to the amplifier is the carrier voltage coupled 

through a transformer, the output voltage of this circuit is 

  ttVKIKtVAV cmmEccv  coscoscos 120   

We can observe that, amplitude modulation has been achieved. The tuned circuit present at 
the collector allows the two side bands to pass through and suppresses other harmonics from 
appearing at the output. This constitutes a band pass filter with center frequency around the 

carrier frequency with a pass band of mf2 .  

1R  

cR  

2R  

eR  
cC  

eC  
mC  

From 
Carrier 
frequency 

AM  

Output 

Modulating 
signal 

ccV  



A low level modulation is also achieved by injecting the modulating signal to the base of the 
transistor. The circuit for achieving this is illustrated in Fig. L 9.3. 

 

 

 

 

 

 

 

 

 

Fig. L 9. 3 A BJT amplifier with base modulation circuit to generate DSB plus C 

Another circuit to accomplish DSB plus C generation is the switching modulator illustrated in 
Fig.L 9. 4. 

 

 

 

 

 

Fig. L 9.4 A Switching Modulator 

 

In this circuit, we assume that the carrier applied to the diode is larger than the modulating 
signal in amplitude. It is further assumed that the diode is an ideal switch which implies that 

for the forward bias condition corresponding to   0tc , it shows zero resistance. The 

transfer characteristic of the diode-load resistor may be modeled as piece wise linear. This 
means 
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where     tVtmtv cc cos1  . We observe from the above that, the output voltage  tv2  

varies periodically between the voltage  tv1  and zero with a frequency of cf . The output 

voltage, may alternatively be expressed as 

      tgtVtmtv cc cos2   

where  tg  is viewed as a periodic pulse train with unity amplitude and a duty cycle of 50%, 

the time period being equal to 
cf

T
1

0  . The Fourier series expansion of this pulse train gives 

us 
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Substitution of this in the above expression gives rise to two components. The first term is 

  ttm
V

V
c

c

c 


cos
4

1
2 








  is the desired DSB plus C component. The second term that 

contains all harmonics are filtered out by the use of a band pass filter with a center frequency 

of cf  with a bandwidth of mf2 .  

Square Law Modulator 

A square law modulator is shown in Fig. L 9.5. This uses the nonlinear property of an active 
device like a diode, BJT etc. The modulating signal is relatively weak. The output of the 
device can be related to the input as 

 

 

 

 

 

 

Fig.L 9.5 A square law modulator that employs a nonlinear device 

 

 

where 1a  and 2a  are constants. The input voltage is expressed as 

    tVtmtv cc cos1   

     tvatvatv 2
12112 
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cf  



Hence, the output voltage becomes 

       2212 coscos tVtmatVtmatv cccc    

Expansion of the second term in the above gives us 

       2212 coscos tVtmatVtmatv cccc    

          



  tttmVtmatVttmVtma ccccccc  2cos1

2

1
cos2coscos2 2

2
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LECTURE-10 

L 10.1 High Level Modulator 

All the transmitters employing the previous circuits are known as low level modulators. This 
is because the amplitude of the modulating signal is rather small that may come from a 
microp phone or a typical video camera like the vidicon.  Amplification of the modulated 
signal takes place after these circuits. Hence such circuits are known as low level 
transmitters. For the high level modulation, the modulating signal is amplified first before it 
amplitude modulates the carrier. This is usually carried out in class-C power amplifiers. This 
is because, as the modulating signal has been already amplified, it can not drive linear power 
amplifiers. Such a high level modulator employing a class-C power amplifier is shown in Fig. 
L 10.1.  

 

 

 

 

 

 

 

 

 

 

Fig.L 10.1 Class B modulator and class C power amplifier 

The output of the nonlinear device (the NPN transistor here biased to near cut off by the 
carrier which has been injected at its base)  becomes 

Class B push-
pull power 
amplifier 

 tm  

tV cc cos  

ccV  

AM 
Output 



          



  tttmVtmatVtmatv ccccc  2cos1

2

1
cos2cos 2

212             (L 10.1) 

considering only upto the second term in the power series expression for the output of a 
nonlinear power amplifier 

We observe from the above that,  

     ttmaaVtVtmatVa cccccc  cos2cos2cos 2121                                           (L 10.2) 

Is the desired DSB with carrier. To realize demodulation with simple, low cost demodulators 
such as an envelope detector, we have to ensure that 

1
2

1

2 
a

a
 

The component with tc2cos  has been rejected by the tuned circuit (band pass filter with a 

centre frequency equal to the carrier frequency) connected to the collector of the power 
amplifier and hence does not appear at the output of the modulator. 
 

L 10.2 POWER IN AN AM SIGNAL 
 
A conventional (DSB with full carrier) AM signal expressed as 

    ttmVtv cmacAM  coscos1                                                                             (L 10.3) 

corresponding to a modulating signal expressed as tV mm cos . This is otherwise known as 

tone modulation.  
 
From (L 10.3), it is observed that, 

      tt
Vm

tVtv mcmc
ca

ccAM   coscos
2

cos                                     (L 10.4) 

The first term in (L 10.4) gives us a power of 
2

2
cV

. This is because a periodic sine wave with 

unit amplitude  such as a carrier has an time-averaged power equal to ½ W.    

Both the second and the third terms give us equal powers of 
8

22
caVm

 as these are also 

sinusoidal waveforms. The total power, hence becomes in a DSB plus carrier type of AM 
waveform, 
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We observe that from (L 10.5), out of this total power, the carrier power is 
2

2
c

c

V
P   whereas 

the modulating signal gives us a power of 
2

2






 caVm

.   

 



This carrier power represents a wastage of power as it does not convey any useful 
information. If the modulation index has a value of 1, then the total transmitted power is 1.5

2

2
cV

. If we choose not to transmit the carrier power, then we actually transmit a power of 0.5 

which accounts for a power saving of 66%. This is so as the carrier does not contain any 
useful information about the modulating signal. If the modulating signal is any arbitrary 

signal  tm , then its average power becomes  tm 2  and the total power in a DSB plus carrier 

type of AM waveform becomes   tmPc
21 . Similarly, the power in a DSBSC type of AM 

waveform is  tmPc
2 . The SSBSC type of AM waveform will have a power content of 

 tmPc
22/1 . 

 

LECTURE-11 
Objective: 
 
To learn DSB-SC modulation/demodulation techniques 
 

 (a) Balanced Modulator Circuit 
 
In a DSB-SC form of amplitude modulation, carrier is suppressed as it does not convey any 
information. This carrier suppression is accomplished in a number of ways. We start with a 
balanced modulator circuit. This is realized by BJT/FETs or devices possessing nonlinear 
characteristics. Such a circuit is shown in Fig. L 11.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. L 11.1 A balanced modulator circuit realized with two  FETs 
 

Any circuit that produces the product of two input waveforms (the modulating signal and the 
carrier) is a balanced modulator. The FET is used here as it has a transfer characteristic which 
is nonlinear, so that the output contains a term equal to the product of the input voltages, 
besides other cross terms. The transfer characteristic of the FET is almost parabolic and may 
be approximated as 

2
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where 0I  is the current for zero gate-source voltage, and ba, are constants. Since the drain 

currents 1di and 2di  flow in the opposite directions in the primary winding of the output 

transformer, the effective primary current pi  is 
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This becomes equal to, upon application of Kirchoff’s law to the input loops of Fig. L 11.1, 

cmgs eev 
2

1
1  and cmgs eev 

2

1
2    (11.3) 

We obtain, 

    mcmp eebeai 2       (11.4) 

The RF output transformer rejects the low-frequency term like me  passing only the product 

mcebe2  which is the desired DSBSC signal. However, generation of DSBSC by this circuit 

requires the two FETS matched completely with respect to aI ,0  and b . Otherwise, residual 

components would appear at the output which obviously is not the desired modulated 
waveform. These days the BMs are available in the integrated circuit (IC) form. Motorola’s 
AN531 is one such IC.  

 (b) Chopper Amplifier based modulator 

 

  

 

 
 
 
 
 
 
 
Fig. L 11.2 (a)  
 



 
Fig. L 11. 2 Chopper balanced modulator 
 
In Fig. L 11.2, chopping of the signal is accomplished by the diode bridge at a rate equal to 
the carrier frequency. The signal applied to the bridge is the message signal plus the dc bias. 
All four diodes of the bridge conduct during the positive half cycle of the carrier thereby 
giving no output voltage and none of them conduct during the negative half cycles of the 
carrier alternately which makes the signal becoming available across the load resistance. The 
carrier is prevented at the output by means of a tuned circuit.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. L 11.3 Demodulation of the DSBSC signal produced by Fig. L 11. 2(a) 

 

For demodulation of the DSBSC  signal, we need to multiply   ttm ccos  by a synchronously 

generated carrier tccos . The same circuits as those used for modulation can be used for 

demodulation. However, the demodulating circuit differs from the modulator in that the 
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output of the demodulator should contain a low pass filter whereas the modulator has a 
bandpass filter at its output. The low pass filtering is provided by the RC combination as 
shown in the above figure. The demodulation may be accomplished by multiplying the 
modulated signal by any periodic signal of frequency c .If  t  is any periodic signal of 

frequency c , then it has a Fourier series  f  given as 
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It is apparent that, if the modulated signal   ttm ccos  is multiplied by this periodic signal 

 t , the corresponding spectrum becomes 
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From the above, it is observed that the resultant spectrum contains a term  fM  which can 
be filtered out by a low pass filter. 
 
Another form of the balanced modulator is shown in Fig. L 11.2 (b).   
 
 
 

 

 

 

Fig. L 11. 4 Another realization of a balanced modulator 
 
Modulation is achieved by using nonlinear devices. A semiconductor diode is a nonlinear 
device. A nonlinear device such as a diode may be approximated by a power series like 

2bvavi   
 
Transistors and vacuum tubes also exhibit similar relationships between the input and the 
output under large signal conditions. To analyze this circuit, we consider the nonlinear circuit 
element in series with the resistance R  as a composite nonlinear element whose terminal 
voltage v  and the current i  are related as above. The voltages 1v  and 2v  are given as 

 tmtv c  cos1  and  tmtv c  cos2  

The currents 1i  and 2i  are given as 

     22
111 coscos tmtbtmtabvavi cc   and                                

     22 coscos tmtbtmtai cc    

Hence the output voltage is given by 
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The signal  tam  in this equation can be filtered put by using a bandpass filter tuned to c  at 

the output terminals. Semiconductor diodes are conveniently used for the nonlinear circuit 
elements in this circuit. All of the modulators discussed above generate a suppressed-carrier 
amplitude modulated signal and are known as balanced modulators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig, L 11.5. Ring Modulator that uses a centre tapped transformer at input as well as the 
output  
 
The diodes in Fig.L 11.5  form a ring as they all point in the same way. They are controlled 
by a square wave  tc of frequency equal to carrier frequency cf which is applied in a 

longitudinal manner by means of two centre-tapped transformers. Under the assumptions of a 
perfect centre tap and identical diodes, there would be no leakage of modulation frequency 
into the modulator output. Let us assume the diodes to be ideal. On the positive half cycle of 
the square wave serving as the carrier, the top and bottom diodes become ‘on’ and the signal 
 tm  passes on to the output. Similarly, during the negative half cycles of the carrier, the 

diagonal diodes become ‘on’ switching off the top and bottom diodes. Hence the message 
signal passes on to the output, however with a negative polarity. Let us find out the kind of 
modulated waveform at the secondary output of the output transformer. 
The square wave has a Fourier series given as 
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The ring modulator output is, therefore 
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There is no output from the modulator at the carrier frequency, that is the modulator output 
consists entirely of modulation products. The ring modulator sometimes is referred to as the 
double-balanced modulator because it is balanced with respect to the message signal as well 
as the carrier. 
 
Under the assumption of the message signal being bandlimited to mm fff  , the 

spectrum of the modulator output consists of sidebands around each of the odd harmonics of 
the square wave carrier as shown in Fig. Here it has been assumed that mc ff   so that 

sideband overlapping is avoided which arises when sidebands belonging to adjacent 
harmonic frequencies cf and cf3 overlap with each other. A bandpass filter with a centre 

frequency cf and bandwidth mf2  at the output would select the sidebands centered around 

cf  and reject all other components. 

 
 
LECTURE-12  DEMODULATION OF AM SIGNALS 
 

(a) Demodulation of DSB with full carrier type of modulated signals 
 

Demodulation is the process of recovery of the original message signal embedded in the AM 
wave. This is accomplished by the demodulator circuit in the receiver. The simplest 
demodulator is a rectifier followed by a low pass filter which is called diode detector.  
 
 
 
 
 
 
 
 
Fig. L 12.1  Envelope detector for conventional AM systems 
 
This circuit is called so as it responds to the envelope of the incoming AM signal. On the 
positive half cycle, the diode conducts and the capacitor C charges to the peak value of the 
rectified voltage. As the incoming signal falls below this value the diode becomes non 
conducting. This is due to the fact that the anode side voltage of the diode is less than the 
cathode side voltage. Thus, the capacitor tends to hold the previously acquired peak value. 
The capacitor discharges through the resistor at a slow rate. During the next positive half 
cycle, the input signal becomes greater than the capacitor voltage and the diode starts 
conducting again allowing the capacitor to charge up to the immediate peak value. The 
capacitor discharges slowly during the off period of the diode which results in a small change 
in its output voltage. During each positive half cycle, the capacitor charges to the peak value 
of the incoming signal and holds this voltage until the next positive cycle. The time constant 
RC of the output circuit is adjusted in such a manner that the exponential decay of the 
capacitor voltage during the discharge period will follow the envelope approximately. The 
output voltage now has a ripple component at c   which is filtered out by another low pass 

filter.    
 
The instantaneous AM signal is 

   ttmV cc cos  C R  tVo  



   tmVtv macAM cos1  

At any time instant, 0tt  , the slope of the envelope is given by 
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At that particular time, the envelope is given as 
   00 cos1 tmVtv macAM   

 
Let 0t  be the time instant when the capacitor C starts discharging. At any subsequent time t , 

the decayed capacitor voltage becomes 
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At 0tt  , the rate of change of decay is 
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If clipping of the negative peaks of the modulating signal is to be avoided, then at 0tt  , the 

slope of the decayed capacitor voltage must be equal to or less than that of the modulated 
carrier. This is equivalent to saying that, 
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This gives us an upper limit for the circuit time constant as 























0

0

cos1

sin
1

.
1

tm

tm
RC

ma

mmam




 

 

Making an maximization of RHS, the term 
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Substitution of the values of the above yields 
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The above equation indicates that, for 100% modulation, the product RC should be zero 
which is not practical. In practice, it is found that for   
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the distortion in the diode demodulator output is not excessive. The highest frequency that 
can be detected by this circuit is 

a
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(b) Demodulation of suppressed carrier type of modulated signals 
 
 
 
 
 
 
 
 
 
 
Fig. L 12.2 A synchronous/ coherent demodulator for DSBSC signals 
 

(i) Costas Loop 

This  as shown in Fig. L 12.3 consists of two coherent detectors. A voltage controlled 
oscillator initially adjusted to operate at the correct suppressed carrier frequency, cf , 

assumed to be known a priori, supplies the locally generated carrier to the two coherent 
detectors-to one of them directly and to the other through a -900 phase shifter. The top 
coherent detector receives the   tccos  directly from the voltage controlled oscillator 

(VCO). The bottom balanced modulator has a carrier of the form   tcsin  obtained by 

feeding the VCO output through a 900 phase shifter. The incoming DSBSC signal 
   ttmE cc cos is fed as the other input to both of the balanced modulators. Suppose the 

carrier phase error is zero which means the phase offset   between the incoming carrier and 

the locally generated carrier is zero. Then the output of the I-channel is  tmEc2

1
 and that of 

the Q-channel is zero. The I-channel output is taken as the demodulated signal. Now under a 
practical situation, there exists a finite phase offset between the two carriers. Then, for such a 

case the I-channel produces an output proportional to   cos
2

tm
Ec  while that of the Q-

channel is   sin
2

tm
Ec . Both of these outputs have been shown to be fed to the phase 

discriminator which consists of a multiplier followed by a low pass filter. For values of   
quite small, we have 1cos   and 0sin  . The low pass filter used in the phase 
discriminator has a cut off frequency of the order of a few Hertz, gives a dc voltage 
proportional to   at its output since variations in   will be very slow as compared to the 

variations in  tm 2 . Thus we have a dc voltage that has the same polarity as   and is 
proportional to it. This changes the frequency of oscillation of VCO in such a way so as to 
lock it to cf , thereby keeping the phase offset within very small values. 
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Fig. L 12.3  Costas loop for demodulation of DSBSC signals 
 
 
The Costas loop provides a good practical solution to achieve phase synchronism common to 
coherent detection. However, it suffers from one major disadvantage-the 1800 phase 
ambiguity of the demodulated signal. Suppose in stead of receiving    ttmE cc cos  we have 

   ttmE cc cos . The output of the multiplier used in the phase discriminator produces an 

output proportional to  tmEc
22 , it is insensitive to the polarity of the incoming signal. 

Under the locked conditions of the phase discriminator, we are not certain about the polarity 
of the demodulated signal; whether it is  tm  or  tm . However, for demodulating audio 
signals, this does not pose a serious problem as our ears are insensitive to polarity of the 
demodulated signal. For video signals, a demodulated signal with negative polarity 
reproduces an inverted picture in the receiver which is obviously very objectionable. 
Similarly, for polar data also this phase ambiguity issue would damage the data as ‘1’ 
becomes ‘0’ and vice-versa. The phase control of the loop ceases for the condition of no 
modulation present at the input. However, this is not a serious problem as the loop establishes 
the lockup condition very fast. 
 

(ii) Squaring loop  
Another realization of a DSBSC demodulator is shown in Fig. L 12.4. This is 
known as a squaring loop. 
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Fig. L 12.4 A squaring loop 
 
Single Sideband Modulation 

Hilbert Transform 
 
The Hilbert transform a time function is obtained by shifting all frequency components by 
900. It is, therefore represented by a linear system having a transfer function  fH  as shown 
in the figure below 
 
 
 
 
 
 
 
 
 
 
 
Fig. L 13.1 Transfer function for Hilbert transformer 
 
 
We note that the phase function is odd. The positive frequency components get a -900  phase 
shift whereas the negative frequencies undergo a 900 phase shift. The system function is 
given as 
   fjfH sgn  corresponding to an impulse response of 
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The SSB signal may be generated by passing a DSBSC modulated signal through a band-pass 
filter of transfer function  fH u . Let us find out this  fH u . We know that a DSBSC signal 

is expressed as 
    tftmEts ccDSBSC 2cos  

 
This is a bandpass signal containing only the in phase component. The low pass complex 
envelope of the DSBSC modulated signal is given as 
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The SSB modulated signal is also a bandpass signal. However, unlike the DBSC modulated 
signal, it has a quadrature as well as an inphase component. Let the low pass signal  tsu

~  

denote the complex envelope of  tsu . Hence, 
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We next proceed to find out the low pass complex equivalent  tsu

~ . To do so, the bandpass 

filter transfer function is replaced by a an equivalent low pass filter of transfer function 

 fH u

~
 as shown in Fig. From the Fig. we observe that 
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The DSBSC modulated signal is replaced by its complex envelope. The spectrum of this is 
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The desired complex envelope  tsu

~  is determined by evaluating the inverse Fourier 

transform of the product of    fSfH DSBSCu

~~
. Thus, 
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Let us have a signal  tm̂ such that      fMfjtm sgnˆ   
Thus, 
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Accordingly, the mathematical expression for the SSB modulated wave is 
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This equation tells us that, except for a scaling factor, a modulated wave containing only an 
upper sideband has an inphase component equal to the message signal  tm  and a quadrature 

component equal to  tm̂ , the Hilbert transform of  tm . 
 
From the foregoing we may note that, when the objective is to retain the lower sideband only, 
the transfer function of the bandpass filter needs to be modified to 

    




 


elsewhere0

0,sgn1
2

1
~ fff

fH m
l  

 
Thus, the output of this bandpass filter in response to the complex envelope of the DSBSC 
modulated signal becomes  
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Accordingly, the mathematical expression for the SSB modulated wave is that contains the 
lower sideband only is 

      tftmtftm
E

ts cc
c

l  2sinˆ2cos
2

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. L 13.2 Phase shift method of generation of SSB-SC signal 
 
The SSB signal as generated by Fig. L 13.2 has a waveform expressed as 
 

      ttmttmt chcSSB  cossin   

where  tmh  is the signal obtained by shifting the phase of each frequency component of 

 tm by 
2


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(b) Weaver’s method of SSB-SC generation 
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Fig. L 13.3 SSBSC generation by Weaver’s method 
 
The Weaver’s method modifies the phasing method to rid of the design issues arising in 
wideband phase shifters. It uses an audio frequency sub carrier at a frequency of 0f . Let us 

find out the expression for the summer output as shown in Fig.  
 
The top left balanced modulator produces an output which is given as 
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The low pass filter with a cut off frequency of 0f  rejects the higher frequency term given by 

 m 0 . Therefore, the output of the top right balanced modulator is expressed as 
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The bottom left balanced modulator produces an output which is given as 
    tttt mmm   000 coscossinsin2  

The low pass filter with a cut off frequency of 0f  rejects the higher frequency term given by 

 m 0 . Therefore, the output of the bottom right balanced modulator is expressed as 
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Hence, the output of the summing amplifier becomes 
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Hence, the modulator generates the USB-SC corresponding to a carrier frequency of 
 0ff c   or the LSB-SC corresponding to a carrier frequency of  0ff c  . 

The Weaver’s method has certain advantages such as: 
 

 No need for any sideband suppression filter 
 No need for any wideband phase shifter 
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 As the phase shifters are designed for a single frequency, they are extremely simple 
and cheap. 

 No need for frequent adjustments 
 Easy to change from USB-SC to LSB-SC and vice versa at the summing junction 

output.   
Demodulation of SSB signals 
 Can be accomplished by any synchronous/ coherent kind of demodulators discussed earlier. 
 
Vestigial Sideband Modulation 
 
This is a compromise between the bandwidth conserving feature of a typical SSBSC 
modulation and demodulation simplicity of the conventional AM signals.  This is widely used 
for transmitting television (TV) signals occupying a spectrum in the VHF and UHF band of 
frequencies. In this form of amplitude modulation, one sideband is fully transmitted while a 
vestige or a part of the other sideband is transmitted. The carrier is also transmitted 
completely to aid the process of demodulation or picture signal recovery at the receiver 
through the use of simple envelope detectors. 
Television signals 

The exact details of modulation format used to transmit the video signal characterizing a TV 
system are influenced by two factors: 

a) The video signal exhibits a large bandwidth and significant low frequency content, 
which rules out the possibility of using SSB. This is because SSB would require 
extremely extensive filtering to separate the two sidebands. In the presence of significant 
amount of low frequency contents which are necessary to reproduce the picture signal at 
the receiver, it is very difficult to suppress one sideband completely as the two sidebands 
are separated from each other by a small amount. Neither DSBSC is also useful as it 
requires a double bandwidth. Hence VSB  becomes a choice that entails the transmission 
of one sideband completely and the other sideband being used partially.    

b) The circuitry used for demodulation in the receiver should be simple and therefore cheap; 
this suggests the use of envelope detection, which requires the addition of a carrier to the 
VSB modulated wave. 

With regard to point (a), it is to be noted that although there is indeed a basic desire to 
conserve bandwidth, in commercial TV broadcasting the transmitted signal is not quite VSB 
modulated. The reason is that at the transmitter power levels are high, with the result that it 
would be expensive to rigidly control the filtering of sidebands. Instead, a VSB filter is 
inserted in each receiver where the power levels are low. The overall performance is the same 
as conventional vestigial sideband modulation except for some wasted power and bandwidth.  

 

 

 



Sideband Shaping Filter in VSB 

Let us replace the sideband shaping filter by an equivalent complex lowpass filter of transfer 

function  fH
~

 as shown in Fig. The filter  fH
~

 may be expressed as the difference between 

two components  fH u

~
 and  fH a

~
 as  

     fHfHfH au

~~~   

The two components are described individually as follows: 

a) The transfer function  fH u

~
 as shown in Fig. pertains to a complex low pass filter 

equivalent to a bandpass filter designed to reject the lower sideband completely. 
b) The transfer function  fH a

~
 shown in Fig. accounts for both the generation of a 

vestige of the lower sideband and the removal of a corresponding portion from the 
upper sideband. 
 

We may redefine the transfer function of the shaping filter as 

      




 


elsewhere0

,
~

2sgn1
2

1
~ maa ffffHf

fH  

The signum function  fsgn  and the transfer function  fH a

~
 are both odd functions of the 

frequency f . Hence they both have purely imaginary inverse Fourier transforms. 

Accordingly, we may introduce a new transfer function as 

      fHf
j

fH aQ

~
2sgn

1
  

that has a purely real transfer function. Let  thQ  denote the inverse Fourier transform of 

 fH Q ; that is 

   fHth QQ   

Thus, our equivalent low pass shaping filter, in terms of the new filter becomes 

     




 


elsewhere0

,1
2

1
~ maQ ffffjH

fH  

The VSB modulated signal is now derived in time domain. To do so, we write 

      tfjtsts c2exp~Re  (C) 



where  ts~  is the complex envelope of  ts . Since  ts~  is the output of the complex low pass 

filter of transfer function  fH
~

 which is produced in response to the complex envelope of 

the DSBSC modulated signal, we may express the spectrum of  ts~  as 

     fSfHfS DSBSC

~~~
  

We have the complex DSBSC signal defined as 

   fMEfS cDSBSC 
~

 

Thus, the output of the equivalent shaping low pass filter is 

      fMfHj
E

fS Q
c ~

1
2

~
  

Taking the inverse Fourier transform of the above we get 

      tjmtm
E

ts Q
c 

2
~  

In the above, the quadrature component of the message signal  tmQ  is defined as 

     thtmtm QQ   

Therefore, the VSB modulated signal becomes, from (C),  

      tftm
E

tftm
E

ts cQ
c

c
c  2sin

2
2cos

2
  (D) 

As we observe, this is the desired representation of the VSB modulated signal containing a 

vestige of the lower sideband. The component  tm
Ec

2
 is the in phase component of the 

modulated signal and the component  tm
E

Q
c

2
 is the quadrature component.  
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Fig. L 14.1 A method of generating VSB signal by a sideband shaping filter  
 
The DSBSC and SSB signals may be considered to be two special cases of the VSB 
modulated signal as defined in (D). If the vestigial sideband is increased to the width of a full 

sideband, the resulting signal becomes a DSBSC wave with the result that  tmQ  vanishes. If, 

on the other hand, the width of the vestigial sideband is reduced to zero, the resulting signal 

becomes an SSB signal containing the upper sideband, with the result that    tmtmQ ˆ , 

where  tm̂  is the Hilbert transform of  tm . 

 

 

Fig. L 14.2  A portion of the TV transmitter to transmit picture signal only that uses low level 
modulation  

A TV transmitter showing the use of VSB for transmission of video signals is illustrated in 
Fig. L 14.2.  

Quadrature Carrier Multiplexed System 

This refers to the transmission of two independent baseband signals using the same carrier. 
The baseband signals DSBSC modulate a given carrier. As two independent message signals 
are transmitted simultaneously on the same carrier offset from each other in phase by 900, it 
is known as quadrature carrier multiplexed modulation system. Both of the modulating 
signals require the same amount of bandwidth for transmission.  
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Fig. L 15.1 A transmitter that utilizes quadrature carrier multiplexing to transmit two 
independent message signals  

The output at the summing junction is expressed as 

      ttmttmEty ccc  sincos 21   

Both of the modulated signals are DSBSC signals that require synchronous detection at the 
receiver. A block schematic of such a receiver is shown in Fig. L 15.2. In this diagram, we 
have not shown explicitly how frequency and phase synchronism is achieved between the 
transmitted and the regenerated carriers. However, this is also not important for our case now. 

 

Fig. L 15.2 A receiver for detecting signals on quadrature carrier multiplexing 

As we may observe quadrature carrier multiplexing reduces the requirement of number of 
subcarriers besides reducing the bandwidth required to transmit the multiplexed signal. A 
typical application of this scheme is used in color TV transmission wherein the color signals 
are transmitted simultaneously on two independent carriers. 
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VESTIGIAL SIDEBAND MODULATION (VSB)  

From previous lectures, it is to be noted that although there is indeed a basic desire to 
conserve bandwidth, in commercial TV broadcasting the transmitted signal is not quite VSB 
modulated. The reason is that at the transmitter power levels are high, with the result that it 
would be expensive to rigidly control the filtering of sidebands. Instead, a VSB filter is 
inserted in each receiver where the power levels are low. The overall performance is the same 
as conventional vestigial sideband modulation except for some wasted power and bandwidth.  

Filtering of Sidebands 

Let the output from a product modulator be expressed as 

    tftmEtu cc 2cos  

Let the transfer function of the bandpass filter following the product modulator be  fH . 

Thus, the spectrum of the filtered modulated signal that appears at the output of the bandpass 
filter becomes 

     

      fHffMffM
E

fHfUfS

cc
c 



2

 

In the above,  fM  denotes the spectrum of the message signal. The problem we address 

here is to design a filter transfer function  required to produce a modulated signal  ts  with 

the desired spectral characteristics such that the original message signal may be recovered 

from  ts  by coherent detection. 

Coherent detection entails the multiplication of the incoming received signal with a locally 

generated carrier tfE cc 2cos' that is synchronous with the transmitted carrier both in 

frequency and phase (let us ignore for the time being how this exact synchronism is 
achieved). Thus the receiver makes use of another product modulator whose output becomes 
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Hence, we have 
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The high frequency components of  tv  represented by the second term are removed by a low 

pass filter that follows the product modulator. Thus, the spectrum of the low pass filtered 
signal output becomes 

        
cc

cc ffHffHfM
EE

fV 
4

'

0   

For a distortionless reproduction of the original message signal at the coherent detector 

output, we require  fV0   to be a scaled version of  fM  which further requires that 

     
ccc fHffHffH 2  = a constant 

We know that the message signal has a spectrum such that  fM  is zero outside the interval 

of mm fff  . Hence we need to satisfy the above equation for values of f  in this 

interval only. As a further simplification, we set 



 
2

1
cfH  so that  

    mmcc fffffHffH  1     (A) 

We note that  ts  is a bandpass signal. Hence, the canonical form of representation of it in 

terms of its inphase  tsI and quadrature components  tsQ  become 

      tftstftsts cQcI  2sin2cos   

We observe that, the spectrum of the inphase component is related to the modulated signal as 
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This becomes 
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From the above, we get 

   tm
E

ts c
I 2

  

Now let us determine the quadrature component  tsQ . To do so, we first find out  fSQ  

which is expressed as 
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This takes the form of 
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A close look at the above expression tells us that the quadrature component  tsQ  can be 

generated from the message signal by passing it through a filter having a transfer function 
given as 



       mmccQ fffffHffHjfH  ,  

Let  tm'  denote the output of this filter in response to the message signal  tm . Thus, the 

quadrature component of the modulated signal becomes 

   tm
E

ts c
Q '

2
  

Combining the inphase and the quadrature components of the modulated signal, we obtain 

      tftm
E

tftm
E

ts c
c

c
c  2sin'

2
2cos

2
   (B) 

Two important points are made at this point: 

a) The inphase component  tsI  is completely independent of the transfer function 

 fH  of the bandpass filter involved in the generation of the modulated signal  ts  so 
long as it satisfies (A). 

b) The spectral modification attributed to the transfer function  fH  is confined solely 

to the quadrature component  tsQ . 

 

The role of the quadrature component is only to interfere with the inphase conmponent so 
as to reduce or eliminate power in one of the sidebands of the modulated signal , 
depending upon the application of interest. 

 

 

 

 

 

 

 

 

 

Fig. L 16.1 A schematic for implementing a VSB signal 
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Envelope Detection of a VSB plus carrier 

Commercial analog television broadcasting makes use of VSB plus a sizeable amount of 
carrier to transmit video signal that occupies a bandwidth of typically 4-5 MHz. As it is a 
broadcast type of service, hence it represents a point-to-multipoint communication. 
Thousands of receivers need to be low cost which calls for envelope detection to be used in 
order to recover the video signal. It is therefore of interest to determine the distortion 
introduced because of envelope detector. The input to the envelope detector is 

      tftmAktftmkAtx cQcacac  2sin
2

1
2cos

2

1
1 



    

Where ak  is a constant that determines the percentage modulation. The output of the 

envelope detector is expressed as 

     
2

1
22

2

1

2

1
1





















  tmktmkAta Qaac  

        =  
 

 

2
1

2

2

1
1

2

1

1
2

1
1




























































 

tmk

tmk
tmkA

a

Qa

ac  

The rightmost term indicates the distortion contributed by the quadrature component  tmQ of 

the VSB signal.  The distortion can be reduced by (i) reducing the percentage modulation to 

reduce ak  and (ii) increasing the width of the vestigial sideband to reduce  tmQ . Both of 

these methods are used practically. In commercial TV broadcasting, the vestigial sideband 
occupies a width of about 1.25 MHz which amounts to about one-quarter of full sideband. 
This has been determined empirically as the width of the vestigial sideband modulation 

required to keep the distortion due to  tmQ  within tolerable limits when the percentage 

modulation is nearly 100. 

SUPERHETERDYNE RECEIVERS 

The modulated signals, we learned in previous lectures are typically detected in radio 
receivers known as superheterodyne receivers. Edwin Armstrong invented the concept of 
super heterodyne receiver in 1918. A receiver is designed to carry out the inverse operation of 
a transmitter. Modulation is an important transmitter signal processing task that is decided by 
a host of factors such as the baseband signal type, the channel conditions, the simplicity and 
cost of a receiver and the type of application or service. Modulation of a carrier by a 
baseband signal is essentially a low pass to bandpass conversion that is effected by signal 
multiplication in time domain. Multiplication of a signal by a sinusoid shifts all frequencies 
up and down by the frequency of the sinusoid. Because of this, station selection can be 



accomplished by building a fixed bandpass filter and shifting the input frequencies so that the 
station of interest falls in the passband of the filter. This is analogous to constructing a 
viewing window on the frequency axis and instead of moving this window around to view a 
particular portion of the axis, we keep the window stationary and shift the entire axis. This 
shifting is called heterodyning and the resulting receiver is called a superheterodyne receiver. 
A typical receiver is shown in Fig. L 17.1.  

 

Fig. L 17.1 A superheterodyne radio receiver broadcast signals  

Heterodyning produces both an upward and downward shift in frequency. While one of these 
shifts moves the desired station into the IF window (450 to 460 KHz), the other shift moves 
another station into this same window. This undesired signal is called an image and needs to 
be eliminated from the receiver. 

A complete bandpass system consists of the transmission channel plus tuned amplifiers and 
coupling devices connected at each end. Hence, the overall frequency response has a more 
complicated shape than that of a single tuned amplifier. Various physical effects result in a 

loose but significant connection between the system’s bandwidth and the carrier frequency cf

. The antennas in a radio system produce significant distortion unless the frequency range is 

small compared to cf , moreover, design of a reasonably distortionless bandpass amplifier 

turns out to be quite difficult if the bandwidth B is either very large or very small compared 

to cf . As a rule of thumb, the fractional bandwidth 
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The bandwidth of the system should be within 1% to 10% of the carrier frequency. Systems 
designed this way are called narrowband systems. All the communication systems that we see 
or work with fall into this category of narrowband systems unless otherwise mentioned.  

As an example, let us listen to the Cuttack station operating at 972 KHz carrier frequency. 
The local oscillator is set to 972+455 = 1327 KHz. Multiplication by this sinusoid places the 
station at 972 KHz right into the IF filter passband. But the station operating at 1327+455 = 
1782 KHz also multiplies the local oscillator frequency to produce a component at 455 KHz. 
This image station would be heard right on top of the desired station. The separation between 
the image and the desired station is twice the IF frequency or 910 KHz. A bandpass filter 
with  a passband of less than 1820 KHz would accomplish the separation. This filter must 
pass the desired station, while rejecting the station 910 KHz away. This filter needs to be 
tunable also. But it need not be a sharp bandpass filter. A single stage of tuned circuit is 
adequate.  

The antenna receives a signal that is a weighted sum of all broadcast signals. After some 
filtering to be examined later, the incoming signal is amplified in an RF amplifier. The 
resulting signal is shifted up and down in frequency by multiplying by a sinusoidal oscillator 
called the local oscillator. The output of the heterodyner is applied to sharp bandpass filter 
consisting of multiple filtering stages. This filtering is combined with amplification. The 
fixed band pass filter is set at 455 KHz, called the intermediate frequency (IF) and has a 
bandwidth of 10 KHz matching that of the station. In most receivers, the IF filter is made of 
three tuned circuits that are aligned so as to generate a Butterworth filter characteristics. The 
output of the IF amplifier represents a modulated signal with a fixed carrier frequency of 455 
KHz with amplification and being separated out from the other signals. 

Choice of the IF frequency 

 Clearly, the IF frequency must not lie in the frequency band allotted for a given 
communication application. For example, commercial AM uses a frequency band 
from 535-1650 KHz. Thus, IF can not be taken to be any value inside this band. 

 A very high value of IF would result in poor selectivity and poor adjacent-channel 
rejection unless sharp cutoff filters are used. 
 
 

The incoming radio signal is given the advantage of image frequency rejection by the RF 
amplifier. All broadcast signals in the standard AM broadcast band (535-1605 kHz) are 
translated to a fixed frequency of 455 kHZ by the IF amplifier. The IF amplifier decides most 
of the gain and bandwidth of the radio receiver. This is in fact, an ingenious combination of 
amplifier and a bandpass filter. This is the greatest advantage of a superheterodyne receiver. 
After the signal is amplified, it is fed to an appropriate detector. This may be a noncoherent 
detector like an envelope detector that detects DSB with carrier type of signals or it may be 
any of the coherent detectors discussed previously. As we may observe, the original signal is 
obtained at the output of this detector which is power amplified (usually push pull 
configuration) and delivered to the speaker for reproducing the original speech or voice.   
 



These receivers are usually equipped with automatic gain control (AGC) circuits that 
maintains the output from the speaker at a constant level in spite of variations occurring in the 
input signal. A part of the detector is tapped and given to IF amplifier input, mixer and the RF 
amplifier in a negative feedback manner so that if the demodulators output increases due to 
some reason, the IF amplifier is biased towards nearer the cutoff so that the gain reduces and 
vice versa otherwise. 
 
 

MODULE-III 
 

ANGLE MODULATION 

Frequency modulation results when the frequency of the sinusoidal carrier is varied in 
accordance with the instantaneous changes in the amplitude of the modulating signal. The 
instantaneous frequency of the modulated signal becomes 

 tmk fci    

This gives us the concept of instantaneous frequency; i.e. the frequency as a function of time 
as it is frequency of the carrier that keeps on changing in accordance with the modulating 
signal. If the modulating signal is analog, the frequency change is continuous. If the baseband 
signal is digital, then the frequency changes in a digital manner with respect to time. For 
example, if the modulating signal is a binary waveform that takes on only two amplitude 
levels, then the carrier frequency also changes in two steps; one frequency corresponding to a 
binary 0 and the other corresponding to a binary 1. These are also known as mark and space 
frequencies. This scheme is called binary frequency shift keying (BFSK). If we consider an 
m-ary waveform as the baseband signal, then the carrier frequency will also change in m-
steps giving rise to a M-ary frequency shift keying (MFSK). 

In a similar manner, if we write, 

 tmk pi    

and substitute this as the phase of a sinusoidal carrier, then we obtain 

      tmkVVtv pcicPM   sinsin  

For a sinusoidal modulating signal, this takes on the form of 

   tVkVtv mmpcPM  sinsin   

This is called phase modulation. Because the phase of the carrier is made to vary in 
accordance with the instantaneous value of the modulating signal. We note that, in adding the 
modulating signal to the phase, we have to take care of the dimensionality of the signal. This 
is so as we can add a phase component to another phase. Thus, the proportionality constant 

pk should be defined properly. For example, in case of a binary baseband signal, the phase is 



expected to change in two phases. One phase corresponds to binary zero and the other phase 
corresponding to binary one. Hence, we write, 

     sin0.sin cpcPM VkVtv   

for a binary zero. This means that the carrier is transmitted as such without any change in its 
amplitude, frequency and phase. However, for a binary one, we write, 

     sin1.sin ccPM VVtv   

in keeping with the fact that we can add one phase to another. Hence pk  assumes the value of 

 . The carrier is inverted in phase by 180 in correspondence with a binary one. This is called 
binary phase shift keying (BPSK). If a quaternary waveform is used as the modulating signal, 
the carrier phase change assumes four distinct values and this is called quaternary phase shift 
keying. In phase modulation, the instantaneous frequency is expressed as 

 tm
dt

d
k

dt

d
p

i
i 


  

which is proportional to the derivative of the modulating signal. For example, if the 
modulating signal is a sinusoid, the instantaneous frequency is proportional to a cosinusoid. 
A smooth time domain signal gives a continuous kind of instantaneous frequency. A square 
waveform, a trapezoidal waveform will yield abrupt changes in the instantaneous frequency. 

As we may note, the constant pk has the dimension of radians per volt. It is evident that, if we 

differentiate the modulating signal in the time domain and then this is used to frequency 
modulate a carrier, we obtain phase modulation. From the definition of a frequency 
modulated signal, we define what is called frequency deviation as 

 tmk fci      

We thus find that, the instantaneous frequency deviation is directly proportional to the 
strength of the modulating signal. A signal with larger amplitude produces more frequency 
deviation and a signal with smaller amplitude gives rise to a lower frequency deviation. The 
maximum frequency deviation is, hence 

 
maxmax tmk f  

The maximum frequency deviation is directly proportional to the peak amplitude of the 
signal. For a sinusoidal modulating signal, we have 

mf Vk max   

or 

2max
mf Vk

f   



Thus, 

     



t

cfcii dmtdttmkdt      

as   is a dummy variable. 

Hence the expression for the modulated signal takes the following form 

      







 



t

fccicFM dmktVtVtv  coscos  

 For a sinusoidal signal tV mm cos , the frequency modulated signal looks like the following 

    







 


 t

Vk
tVtVtv m

m

mf
ccicFM sincoscos  

Here we define the modulation index for an FM signal as  

 
m

f

m f

tmk

f

f maxmax 


  

For all practical purposes, we may consider   to be zero without any loss of generality. 

From the expression of the FM signal, the modulation index   is 

m

mf

f

Vk




2
  

We note from the above that the modulation index for an FM signal is greater than unity 
unlike that in the DSB plus carrier type of AM. The modulation index here depends upon the 
peak amplitude of the modulating signal and its maximum frequency content. A standard 
value of the maximum frequency deviation is 75 KHz which is used for the FM broadcast 
systems. The FM broadcast systems operate in the 88-108 MHz. If we examine the 
expression for the FM signal, we note that it contains a term like cosine of a sine. The 
expansion of this term gives a cosine of another cosine and cosine of a sine. These are 
captured by Bessel’s function. We write 

        ttttVttVtv mcmccmccFM  sinsin.sinsincos.cossincos   

We write 

          tnJtJtJJt mnmmm  2sin2...4sin22sin2sincos 2420   

 



              tnJtJtJtJt mnmmmm  12sin2...5sin23sin2sinsinsin 12531  

 

Substitution of the two expressions in the expression for the FM signal gives us 

          
            











 ...12sin2...5sin23sin2sin2.sin

...2sin2...4sin22sin2cos

12531

2420

tnJtJtJtJt

tnJtJtJJt
Vtv

mnmmmc

mnmmc
cFM 



The bracketed term is simplified as 

   tttt mcmcmc   coscossinsin2  

   tntntnt mcmcmc   coscossinsin2  

   tntntnt mcmcmc   sinsinsincos2  

                 
              












...4sin4sin3cos3cos

2sin2sincoscoscos
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ttJttJ

ttJttJtJ
Vtv

mcmcmcmc

mcmcmcmcc
cFM 



 

It is obvious from the above equation that, the FM signal contains a carrier term whose 

amplitude is   cVJ 0 , two sidebands at frequencies  mc    with amplitude   cVJ 1 , 

another pair of sidebands at frequencies  mc  2  with amplitude   cVJ 2  and so on. The 

sidebands occur at frequencies  mc n   with amplitude   cn VJ  . It is apparent that the 

spectrum of an FM signal extends up to infinity theoretically in both positive and negative 
frequency axes. And we may be led to the belief that the bandwidth of an FM signal is 
consequently infinite due to the presence of infinite number of sidebands. This is correct. 
Then do we require an infinite amount of bandwidth to transmit an FM signal? The answer is 
no. This is due to the fact that, although there are sidebands occurring at frequencies 

 mc n  ,  however, their amplitudes vary as   cn VJ   which assumes smaller values as n  

becomes higher. Hence, it is practical to consider a few values of n  in the expression for the 
FM signal in order to compute its bandwidth. We may note, in passing that the spectrum of a 
phase modulated signal will look identical to that of the FM signal for the same value of 
modulation index. 

Reproducing the expression for the FM signal, we note that, when the modulation index is 
very less, i.e. 1 ,  sin  and 1cos  , then we call this a narrowband FM signal 

which has a simplified expression of 

      ttttVttV mcmccmcc  sinsin.sinsincos.cossincos   

and it becomes 

   tttVttV mcccmcc  sin.sincossincos   

We expand this as 



      



  tttVtv mcmcccNBFM  coscos

2
cos  

As we may note from the above expression, this looks similar to that obtained for a DSB+C 
type of AM waveform, however with certain differences. The AM waveform under 
consideration looks like 

      



  tt

m
tVtv mcmc

a
ccAM  coscos

2
cos  

 

 

 

 

We observe from the above figure that, the resultant of the two sidebands in an AM 
waveform lies parallel to the phasor and points in the same direction as the carrier. Thus, the 
total amplitude at any instant is the sum of these two. 

Multiple Tone Wideband FM (Non Linear Modulation) 

We consider frequency modulation of a sinusoidal carrier when the modulating signal 
contains multiple sinusoids. For example, let us make 

  tVtVtm mmmm 2211 coscos    

This signal when frequency modulates a sinusoidal carrier gives  

     dttmktVtv fccFM cos  

Hence,   t
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The resulting FM signal becomes 
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Let us denote 
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m
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
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2

2
2

m

mf Vk


   

The FM signal becomes in terms of the modulation indices, 



   tttVtv mmccFM 2211 sinsincos    

Expansion of this equation gives us 

    tttVtv mmccFM 2211 sinsincos.cos    

This further results in 

          
        
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Let us expand the first curly bracketed term further and see what we get 
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Use of      





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0

sinsinsin
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l
mlm tlJt   gives us 
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Similarly, the second curly bracketed term gives us 

       







 
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p
pmcFM tptmtJJVtv

2

0
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12

1
21 cos   

The expression contains the following terms 

a) a carrier frequency tc  with an amplitude    2010  JJ  

b) a set of sidebands corresponding to the first sinusoid 1m  with amplitudes    21  pm JJ  

occurring at frequencies  1mc m    for ,..3,2,1m  

c) a set of sidebands corresponding to the first sinusoid 2m  with amplitudes    21  pm JJ  

occurring at frequencies  1mc p    for ,..3,2,1p  

d) a set of cross modulation terms  21 mmc pm    with amplitudes    21  pm JJ  for 

,..3,2,1m  and ,..3,2,1p  

 

 



 

 

 

 

 

A phase modulator through the use of differentiation of the message signal 

 

Similarly, we note that, 

 

 

 

 

 

 

A frequency modulator through the use of integration of the message signal 

These two figures illustrate the relationship between frequency modulation and phase 
modulation. If we integrate a signal in the time domain and then use this signal to phase 
modulate a sinusoidal carrier, we obtain a frequency modulated signal. Hence, this is called 
angle modulation and as we may note, is a nonlinear modulation system.  

FM as a nonlinear modulation system 

This follows from that fact that any sinusoid is expressed as 

  tjVc expRe  

For our case, the FM signal is 
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fccFM dmktjVtv expRe  

We find that, 
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where either 1x  or 2x  is taken as   







 



t

fc dmktj  . 

This is in contrast with the DSB plus carrier type of AM system which is a linear modulation 
system. 

POWER IN AN FM SIGNAL 

We may find that, from the definition of the FM signal, the power in the FM signal is a 
constant. This is because, the power of a signal depends on its amplitude. The amplitude of 

an FM signal is a constant and hence the power is 2

2
cV  Watts. For a sinusoidal carrier of 

peak amplitude 1V, the power of the corresponding FM signal is 0.5 Watt. The information is 
contained in the frequency changes and the amplitude does not change. Hence power required 
to transmit an FM signal is a constant which is again in contrast with an AM signal. Any 
change in the amplitude of an FM signal is due to channel imperfections or distortions which 
are removed usually by means of a limiter in the receiver. It is due to this reason that an FM 
signal sounds clearer than an AM signal for the same program. The sound transmission in TV 
employs FM. 

Comparison of AM and FM 

Both FM and PM are called angle modulation and we have looked at circuits that can be used 
to transmit information. However, FM is preferred for practical systems. This is due to the 
fact that, in a PM waveform, information resides in the phase of the modulated carrier. In 
order to retrieve information from it at the receiver, we have to have perfect knowledge about 
phase. Maintaining a coherent phase for all possible values of phase in a PM waveform is an 
arduous task. This is because the phase of the carrier continually changes in response to an 
analog signal. Thus, system designers prefer to work with FM as extraction of the 
instantaneous frequency can be performed by a host of circuits. The FM has the following 
merits over AM. 

1) The amplitude of the FM is a constant as information to be transmitted resides in the 
instantaneous frequency of the carrier. This amplitude is independent of the 
modulation index. Hence, the transmitted power in FM is a constant unlike AM where 
the modulation index decides the amount of power being transmitted. This implies 
that low level modulation may be performed in an FM transmitter facilitating the use 
of power efficient class C amplifiers in order to make the transmitted signal suitable 
for wireless transmission. All the transmitted power in FM is useful whereas in AM 
most of goes as a waste.   

2) FM receivers are typically fitted with limiters that take care of amplitude fluctuation 
caused due to noise and thus, amplitude variations do not affect the quality of the 
reproduced signal. We say that an FM system enjoys more noise immunity. 

3) It is possible to further reduce the effect of noise by increasing frequency deviation. 
AM does not have this feature as we cannot go for overmodulation in AM. 

4) FM broadcast takes place in the upper VHF and UHF ranges which happen to be less 
noisy than the MF and HF allotted to AM broadcast. 



5) FM broadcast takes place by space wave propagation limiting the radius of operation 
to slightly more than line of sight. It is possible to operate several independent 
transmitters on the same frequency with considerably less interference than would be 
possible with AM.  

 

ANGLE MODULATOR CIRCUITS 

In a varactor diode modulator, the junction capacitance of a reverse biased diode changes 
linearly with the modulating signal. The bias is varied by modulating voltage in series with a 

voltage of bV . This change in the junction capacitance of the diode brings about a change in 

the oscillating frequency of a suitable oscillator connected to this diode. This is the simplest 
reactance modulator and is often used for automatic frequency control and remote tuning. 

Basic reactance modulator using FET 

An FET based reactance modulator is shown in Fig. Here, the drain to gate impedance is 
assumed to be very large compared to the gate-to-source impedance. Three configurations of 
an FET based modulator are realized and shown in the following diagrams. 

To determine z , a voltage dsv  is applied between the drain and source. The resulting drain 

current di  is computed as follows. The gate voltage is  
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c
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The drain-to-source impedance thus, is  
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As the reactance is much larger than the resistance, we will approximate the drain-to-source 
impedance as 

Rg

X
jz

m

c  



This means that the reactance is capacitive and we may write the drain-to-source impedance 
as 

eqmm

c
eq CfRCgfRg

X
X

 2

1

2

1
  

The output impedance of the FET under these conditions is purely capacitive and is given as 

RCgC meq  . Following observations are made from this equivalent capacitance. 

 The expression RCgm  has the dimension of capacitance 

 The impedance z  would have a resistive component if the gate-to-source resistance is 
not small compared to the gate-to-drain impedance. 

 The equivalent capacitance depends on the device transconductance and thus can be 
varied with respect to a voltage. 

 The capacitance can be adjusted to any value , within limits, through judicious 
selection of R  and C . 

 

In practice, the gate-to-drain impedance is made five to ten times the gate-source impedance. 

Let nRX c   at the carrier frequency. The, we have 

nR
C

X c 

1

 and therefore 
nRfnR

C
 2

11
 . Substitution of this value of 

capacitance into the equivalent capacitance obtained earlier, we get 
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g
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RCgC mm

meq  22
  

II. FET Reactance Modulator 

 We refer to Fig. where the places of  R  and C  have been swapped and we further assume 

that the resistance is much larger than the reactance; i.e. cXR  . Everything else remaining 

the same, we write 
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And therefore, the drain-to-source impedance is expressed as 
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The expression for z  shows that it is inductive, and the equivalent inductance is given as  

m
eq g

RC
L  . The other two cases of FET reactance modulators are shown in the following 

figures.     

 

 

 

 

 

 

 

 

 

 

 

 

 

A wide band FM transmitter 

FM Demodulators 

Frequency demodulation is the process that enables us to recover the original modulating 
signal from a frequency-modulated signal. The objective is to produce a transfer 
characteristic that is the inverse of that of the frequency modulator, which can be realized 
directly or indirectly. The requirement of a FM demodulator is to produce an output voltage 
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that varies linearly with frequency. A direct method uses frequency discriminator that 
produces an instantaneous amplitude being proportional to the instantaneous frequency of the 
input FM signal. The slope detector is a very basic form of FM demodulator, though its 
linearity is not good. 

The frequency discriminator is a combination of a slope circuit and an envelope detector. An 
ideal slope detector has an imaginary transfer characteristic that varies linearly with 
frequency inside a prescribed frequency interval.  

Balanced Slope Detector 

This is also called round Travis detector. It has two slope detectors, one tuned to a frequency 
above the carrier frequency while the other is tuned to below-the carrier frequency. The 
envelope detectors that follow the two slope detectors combine to produce a differential 
voltage. The output from this detector is observed to have an S shape when plotted as a 
function of frequency. When the incoming signal is unmodulated, the differential output 
voltage is then the incoming signal is unmodulated, the differential output voltage is zero as 
both the envelope detectors give identical outputs. When the carrier frequency is towards a 
higher frequency, one arm produces more voltage than the other and hence a positive voltage 
is obtained. On the other hand, when the carrier frequency deviates towards a lower 
frequency, it is the other arm that will produce more voltage than the other and hence the net 
differential output becomes negative.  

 

 

 

 

 

 

 

Fig. Block schematic of a frequency discriminator 

A simple frequency demodulator can also be realized by the following circuit. 

Foster-Seeley Discriminator 

This is also known as the center tuned discriminator. This is a derived form of the balanced 
slope detector and widely used in FM demodulators. Here both the primary and the secondary 
are tuned to the carrier frequency. This greatly simplifies the alignment problem of the 
balanced slope detector and yields better linearity. The voltage applied to each diode is the 
sum of the primary voltage and the corresponding half-secondary voltage. The primary and 
secondary voltages are: 

Slope detector 
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i) exactly 900 out of phase for an input carrier frequency of fc 
ii) less than 900 out of phase an input carrier frequency higher than fc 
iii) more than 900 out of phase an input carrier frequency lower than fc 

 

This results in individual voltages being equal only for an incoming frequency equal to the 
carrier frequency. At all other values of carrier frequency, the output from one diode is higher 
than the other that depends on the deviation of the carrier frequency from its original value. 
The output magnitude depends on the deviation of the input frequency from the carrier 
frequency. 

 

 

Phase Discriminator (Foster Seely Discriminator) 

In this circuit, the individual component voltages will be the same at the diode inputs at all 
frequencies, the vector sums will differ with the phase difference between primary and 
secondary windings. The result is that the individual output voltages are equal only at the 
carrier frequency. At all other frequencies the output of one diode is greater than that of the 
other. Which diode has the larger output depends entirely on whether the incoming frequency 
is below or above the carrier frequency. It is noted that they are the same as in a balanced 
slope detector. Accordingly, the overall output is positive or negative according to the input 
frequency. As required, the magnitude of the output depends on the deviation of the input 
frequency from the carrier frequency. 
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Phase Discriminator circuit implementation for an FM demodulator 

The resistances forming the load are made much larger than the capacitance reactances. The 

circuit composed of 3, LC  and 4C  is effectively placed across the primary winding. This is 

shown in Fig.2. The voltage across LVL ,3  becomes 
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3L  is an RF choke and is deliberately made large. Thus the inductive reactance greatly 

exceeds those of C  and 4C , especially since the first of these is a coupling capacitor and the 

second is an RF bypass capacitor. All of these imply that 

12VVL  .Hence, it is proved that the voltage across the RF choke is equal to the applied 

primary voltage. The mutually coupled, double-tuned circuit has high values of primary and 
secondary Q  and a low mutual inductance. We may, therefore neglect the reflected resistance 

from the secondary and the primary resistance. The primary current is given as 

1

12

Lj

V
I P 

  

The voltage induced in the secondary due to this primary current is 

ps MIjV   

with the sign depending on the direction of winding. Let us work with the negative voltage. 
The secondary voltage becomes 
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The voltage across the secondary winding, abV , can now be calculated with the aid of Fig.3. 

The secondary has been redrawn here. It follows from this figure that 
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where 222 CL XXX   

and may be positive, negative or even zero, depending on the frequency. The total voltages 
applied to the two diodes may be written as 

122

1
VVVVV abLacao   

122

1
VVVVVVV abLacLbcbo   

The voltage applied to each diode is the sum of the primary voltage and the corresponding 
half-secondary voltage. The dc output voltages cannot be calculated exactly because the 
diode drop is not known. However, it is known that each is proportional to the peak value of 
the RF voltage applied to the respective diode. Hence, 

boaooboaba VVVVV  ''''  

Let us consider the case when the input frequency inf  is instantaneously equal to cf . For this 

condition, 2X  is zero and the voltage becomes 
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From the above equation, we note that, the secondary voltage abV  leads the applied primary 

voltage by 900. Thus, abV
2

1
 leads 12V  by 900, and abV

2

1
  lags 12V  by 900. Now we add up 

these two diode voltages vectorially. This is shown in the following figures. It is observed 

that, since boao VV  , the discriminator output is zero. For any incoming frequency other than 

the carrier frequency, there is a net output voltage. Let us consider the case when inf  is less 

than cf . Hence, 2LX  is less than 2CX  so that 2X is negative. Hence, the output voltage 

becomes 
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From this, it is observed that, abV  lags behind 12V  by more than 900 so that abV
2

1
  must lead 

12V  by 900. It is apparent from the vector diagram that aoV  is less than boV . Thus, the 

discriminator output is negative when inf is less than cf . Similarly, when the incoming 

frequency is greater than the carrier frequency, 2X  is positive, and the angle of the 

impedance 2Z  is also positive. Thus, abV  lags 12V  by less than 900 . This time aoV  is greater 

than boV  and the output voltage ''baV  is positive.   

If the frequency response is plotted for the phase discriminator, it follows the required S  

shape as shown in Fig.5. As the input frequency moves farther and farther away from the 
center frequency, the difference between the two diode input voltages becomes greater and 
greater. The output of the discriminator will increase up to the limits of the useful range, as 
shown in this figure. The limits correspond roughly to the half-power points of the 
discriminator tuned transformer. Beyond these points, the diode input voltages are reduced 
because of the frequency response of the transformer, so that the overall output falls. 

The phase discriminator is much easier to align than the balanced slope detector. There are 
only tuned circuits, and both are tuned to the same frequency. Linearity is also better, because 
the circuit depends less on frequency response and more on the primary-secondary phase 
relation, which is quite linear. The only less noticeable disadvantage of this circuit is that it 
does not provide any amplitude limiting.  

Ratio Detector 

In the Foster-Seeley discriminator, changes in the magnitude of the input signal will give rise 
to amplitude changes in the resulting output voltage. This makes prior limiting necessary. A 
ratio detector addresses this problem by incorporating an amplitude limiter into the Foster-
Seeley discriminator circuit. 

A close look at the above FM detector reveals that the sum boao VV   is a constant, although 

the difference keeps on changing with respect to the change in the incoming frequency. 
Deviation from this ideal does not result in undue distortion in the ratio detector. It follows 
that any variations in the magnitude of this sum voltage is considered undesirable. This needs 
to be suppressed. A discriminator that provides this suppression remains unaffected by the 
amplitude of the incoming signal. The ratio detector is obtained from the Foster-Seeley 

discriminator by i) reversing one diode, ii) placing a large capacitor 5C  across the output and 

iii) taking the output from elsewhere. 

 



 

A ratio detector circuit 

Reversing of the diode 2D makes o  positive with respect to 'b , so that ''baV  is now a sum 

voltage, rather than a difference voltage. Hence it becomes possible to connect a large 
capacitor between 'a  and 'b  in order to keep this voltage a constant. With the connection of 

this capacitor 5C , ''baV does not represent the output voltage, rather the output voltage is taken 

between o  and 'o . It is now necessary to ground one of these two points, and o appears to be 

more convenient. In practice, 65 RR  , and hence the output voltage oV  is calculated as 
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This equation shows that the ratio detector output voltage is equal to half the difference 
between the output voltages from individual diodes. Hence the output voltage is proportional 
to the difference between the individual output voltages.  The ratio detector therefore behaves 
identically to the discriminator for input frequency changes. The S curve applies equally to 
both the circuits. 

The slope detectors-single or balanced- are not used in practice. They have been included 
here to gain an understanding of frequency-to-voltage conversion and help in building 
practical FM demodulators. The Foster-Seeley discriminator is very widely used in both 
narrowband and wideband FM radio receivers. It is also used in satellite station receivers, 
especially for the reception of TV carriers. The ratio detector is a good FM demodulator 
typically used in TV receivers for recovering frequency modulated audio signal. Its 
advantage over the discriminator is that it provides both limiting and a voltage suitable for 
AGC, while the main advantage of the discriminator is that it is very linear. Thus, the 
discriminator is preferred in situations in which linearity is an important characteristic (high-
quality FM receivers), whereas the ratio detector is preferred in which linearity is not critical, 
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but component and price savings. Under critical noise conditions as encountered in receiving 
satellite signals, the phase-locked loop is typically used.  

Limiting of FM Waves 

When an FM wave is transmitted through a communications channel, in general, the output is 
not expected to have a constant amplitude because of channel imperfections. At the receiver, 
it is essential to remove the amplitude fluctuations in the channel output prior to frequency 
demodulation. This is customarily done by means of an amplitude limiter. The transfer 
characteristic of an ideal hard limiter is shown in Fig.  

We assume the limiter to be a memoryless device in order to analyze the operation of this 
circuit. The limiter output, in general can be expressed as 
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We also assume the amplitude fluctuations to be slow compared to the zero-crossing rate of 

the FM wave  txc . The sign changes of  txc  may be considered to be proportional to the 

carrier phase shifts as given by 

     ttv cossgn  

where  t  is the phase component of the carrier containing the message signal. The function 

   tcossgn  a function of  , is a periodic square wave when the modulation is zero. The 

Fourier series representation of this function gives us 
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Use of  t  in place of   in the above expression gives us 
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From the above, we note that hard limiting the FM signal produces image sidebands at odd 

harmonics of the carrier frequency cf . For a very large carrier frequency, a bandpass filter 

centered at cf  selects the desired FM signal and rejects the higher order terms. The bandpass 

filter output, therefore becomes 

    ttftv c 


 2cos
4

 



In practice, the combination of the hard limiter and band-pass filter is implemented as a 
single circuit commonly referred to as band-pass limiter. 

A phase discriminator makes use of the following: 

       cos2cos
2

1
coscos  ttt  

Use of a low pass filter with a cut off frequency of  rad/s will eliminate the double 
frequency term and the output would be proportional to cos . 

The composite signal at the IF filter output, is given as 

     tntvtr   where  tn  is a band-limited version of the white noise  tw . In particular, 

 tn  is the sample function of a noise process  tN  with the following power spectral 

density: 

PM Demodulators:  

Phase modulators are the same as frequency modulators except that the signal is 
differentiated first and then fed to the VCO. We may approximate the process of 
differentiation by the following 

   
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Fig. A phase demodulator 

This leads to a demodulator as shown next. This is a phase demodulator as a time shift is 
equivalent to a phase shift. Any system that has a transfer function magnitude that is 
approximately linear with frequency in the range of frequencies of the FM wave changes FM 
into AM. Even a sloppy band pass filter will work as a discriminator if we operate over a 
limited range relative to the filter bandwidth, The linearity of a band pass filter discriminator 
can be improved by adopting the principles of a balanced modulator. The characteristic is 
subtracted from a shifted version of itself. The difference between the outputs of the two band 
pass filters with separate center frequencies is considered. 
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Let us assume that the modulated signal at the input to this circuit is 
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When the modulation index is less than unity and the delay produced is sufficiently small, we 
may approximate 
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Under these conditions, the modulated signal is approximated as 
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The delayed signal is 

        000 2sin2cos ttfttfAttx mccc    

The IF used for TV is 40 MHz.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MODULE-IV 
Sampling of Analog Signals 

 
4.1 Sampling of a band limited analog signal is of three types: 

a) Instantaneous sampling 
b) Flat top sampling and 
c) Natural sampling 

 

Instantaneous sampling is achieved by multiplying a band limited signal by a periodic 

impulse train. Let the periodic impulse train with period sT be represented as 
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Multiplication of the message signal  tm  and this periodic impulse train is identical to 

convolution in the frequency domain. Hence, we write 
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We observe that, after the multiplication, the resultant sampled signal becomes periodic with 
the amplitude of the impulse varying in proportion to the amplitude of the baseband signal. 
The spectrum is a line spectrum in the sense that the individual spectra are centered at 
integral multiples of the sampling frequency with a bandwidth equal to twice that of the 
original baseband signal. Hence, in this regard, an individual spectrum may be viewed as 
being equivalent to a DSBSC signal spectrum. Before we proceed further to understand the 
nuances of sampling, let us review a few concepts from fundamentals that we learned in 
module-I of this course. 
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The above integral is expressed as 
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This result follows from the identity as shown below 
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Thus, the integral in our problem assumes a value equal to  
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and zero for the case when nm   

4.2 Reconstruction of the signal from its samples 

A close look at the spectrum of the sampled signal reveals that it contains the original signal 

spectrum alongwith the other spectra centered at snf . Hence to recover the original signal it 

suffices to pass the sampled spectrum through an ideal  low pass filter or brick wall filter 
having the following frequency domain characteristics: 
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fH  

The output of this filter is 

     fHfMfM sampˆ  

We observe from the above that, the rectangular filter passes only the baseband component 

having a maximum frequency content of mf  Hz. Other spectral components are discarded at 

the output of the filter. Let us see the effect of rectangular filtering in the time domain. 

Q 4.2: Assume that a bandlimited function,  
t

t
ts


20sin

  is sampled at 19 samples per 

second. The sampling function is a unit height pulse train with pulse widths of 1 msec. The 



sampled waveform forms the input to a low pass filter with cutoff frequency 10Hz. Find the 

output of the low pass filter and compare this with the original signal  ts . 

Soln: We only need to know the first two coefficients in the Fourier series expansion of the 
pulse train. These are given by 
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The output time function is the inverse Fourier transform of  fS0 , and is given by 
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The second term represents the aliasing error. 

Q 4.3:  A 100Hz pulse train forms the input to the RC filter. The output of the filter is 
sampled at 700 samples per second. Find the aliasing error. 

Soln: The square wave can be expanded in a Fourier series to yield, 
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The filter transfer function is given by 
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The output of the filter is found by modifying each term in the input Fourier series. The 
amplitude is multiplied by the transfer function magnitude and the phase is shifted by the 
transfer function phase. The result is 
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Let us assume impulse sampling. The result is that the component at 500Hz appears at 200Hz 
in the reconstructed waveform, and the component at 700Hz appears at dc (zero frequency). 
We shall ignore the higher harmonics. The reconstructed waveform is therefore given by 
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The last two terms represent the aliasing error. 

Q 4.4: The function   tts 2cos is sampled every ¾ second. Evaluate the aliasing error. 

Soln: The impulse train of period sT , each narrow impulse being of width dt has a Fourier 

series expansion as 
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The aliasing error is due to  t66.2cos00266.0 . 

Q 4.5: A signal  tm  is band-limited to B  Hz is sampled by a periodic pulse train  tp
ST  

made up of a rectangular pulse of width B81 seconds (centered at the origin) repeating at the 

Nyquist rate (2B pulses per second). Show that the sampled signal  tm  is given by 
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Soln.  The period of the periodic pulse train is 
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pulses per second. The fundamental frequency is, therefore Bff S 20  . The Fourier series 

of the periodic rectangular pulse train is written by computing the Fourier coefficients 
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The coefficient na  is computed as 
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We note that 
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Thus, the periodic rectangular pulse train is expressed as 
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The sampled signal is obtained by simply multiplying the message signal by the periodic 
rectangular pulse train. We write, 
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We observe from the above that the reconstructed signal  tm̂  is obtained by the 

superposition of sinc(x) pulses.  

We observe from the above the following: 



 The sampled signal contains a component proportional to the message signal  tm . 

 The signal has an envelope proportional to 







4
sin

n
c  

 The message signal can be recovered from the sampled signal by passing it through a 
low pass filter of cut off frequency B  Hz and gain 4. 

 

The commutator approach toward multiplexing requires that the sampling rate of the various 
channels be identical. If signals with different sampling rates must be multiplexed, there are 
two general approaches that can be taken. One uses a buffer to store sample values and then 
intersperse these and spit them out at a fixed rate. The buffer approach is also effective if 
sampling rates contain variation (jitter). This is known as asynchronous multiplexing. The 
system must be designed so that the buffer always has samples to send when requested by the 
channel. This might require inserting stuffing samples if the buffer gets empty. Alternately, 
the buffer must be large enough so that it does not overflow with input samples. 

The buffer approach is also used if the various sources are transmitting asynchronously. That 
is, suppose that they are not always transmitting information. The sizing of the buffer requires 
a probability analysis and the resulting multiplexer is known as a statistical multiplexer. The 
statistical multiplexer represents an efficient technique for multiplexing channels since a 
source only has a time slot when it needs it. On the negative side, since individual source 
messages are not occurring at a regular rate, the message must be tagged with a user ID. If the 
channels are synchronous with the samples occurring at a regular and continuous rate, the 
statistical multiplexer approach is not the best approach. 

The second general technique involves sub-and super-commutation. This requires that all 
sampling rates be multiples of some basic rate. Meeting these requirements might require 
sampling some of the channels at a rate higher than what you would use without 
multiplexing. For example, if we have two channels with required sampling rates of 8KHz 
and 15.5KHz, in order to effect that combination we might choose to sample the higher 
frequency channel at 16KHz. 

The concept of sub-and super-commutation is quite simple, and we illustrate it with an 
example. Let us suppose that we have a commutator wheel with 32 slots. Suppose we wish to 
multiplex the following 44 channels: 

1 channel sampled at 80KHz   1 channel sampled at 40KHz 

18 channels sampled at 10KHz  8 channels sampled at 1250Hz 

16 channels sampled at 625 Hz 

 

 



We note that all of the sampling rates are multiples of 625Hz. Let us choose the basic rate of 
the commutator wheel to be 10,000 rotations per second. Therefore, each of the 18 channels 
which must be sampled at 10KHz get one slot on the wheel. The channel that must be 
sampled at 40KHz needs four equally-spaced slots on the wheel, so it is sampled four times 
during each 0.1msec rotation of the wheel. Similarly, the 80KHz channel needs eight equally-
spaced slots on the wheel. These higher rates are multiplexed using supercommutation. 

The channels that need to be sampled at less than 10KHz only must be sampled on selected 
rotations of the wheel. For example, a 1250 channel needs to be sampled once every eight 
rotations of the wheel while a 625 Hz channel needs to be sampled only once every 16 
rotations. We accomplish this using subcommutation wheels. The eight 1250Hz channels are 
commutated together with a wheel rotating at a rate of 1250 rotations per second. Each 0.1 
msec, one of the channels is connected to a cell on the main commutator wheel. Similarly, the 
sixteen 625 Hz channels are commutated with a wheel rotating at 625 rotations per second. 

Binary 1’s and 0’s such as in PCM signaling may be represented in various serial-bit 
signaling formats called line codes. Some of the widely used line codes are shown in the 
following figure. There are two major categories of the line codes: return-to-zero (RZ) and 
non-return-to zero (NRZ). With RZ coding, the waveform returns to a zero-volt level for a 
fraction (usually half) of the bit interval. Before discussing more about the line codes, let us 
touch upon some of the desirable aspects of a line code. 

a) Self-synchronization- There is enough timing built into the code so that bit 
synchronizers can be designed to extract the timing or the clock signal. A 
long series of 1’s and 0’s should not cause a problem in timing recovery 
required at the receiver in order to establish the operating clock. 

b) Low probability of bit error: Receivers can be designed that will recover 
the binary data with a low probability of bit error when the input data signal 
is corrupted by the noise or ISI.  

c) Spectrum matching to the channel If the channel is ac coupled, the PSD of 
the line code should contain insignificant portions at frequencies near zero. 
In addition the signal bandwidth need to be sufficiently small compared to 
the channel bandwidth so that ISI will not be a serious issue. 

d) Transmission bandwidth: It should be as small as possible. 
e) Error detection capability: It should be possible to implement this feature 

easily by the addition of channel encoders and decoders, or it should be 
incorporated into the line code. 

f) Transparency-The data protocol and line code are designed so that every 
possible sequence of data is faithfully and transparently received. 

A quarternary signal may be formed by grouping the message bits in blocks of two and using 
four amplitude levels to represent the four possible combinations 00,01,10 and 11. Thus, 

bTT 2  and 
2
brr  . Different assignment rules or codes may relate kb  to the grouped 

message bits. We show two such codes in Table 1. 

 

 



Table No.1 Two codes for the line codes 

kb  Natural code Gray code 

 11 10 

2
A  10 11 

2
A  01 01 

2

3A
  

00 00 

The Gray code has advantages relative to noise-induced errors because only one bit changes 
from going from level to level. Quaternary coding generalizes to M ary coding in which 
blocks of n  message bits are represented by an M -level waveform with 

nM 2  

Such a pulse corresponds to Mn 2log  bits. The M-ary signaling rate is decreased to 

M

r
r b

2log
  

We note that the use of M ary coding reduces the requirement of transmission bandwidth 

by M2log  as compared to binary transmission. However, increased signal power is required 

to maintain the same spacing between the amplitude levels. For an M ary signaling format, 
the power associated with the signal is 
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Design of a time-division multiplexer 

Q 4.6: Design a time-division multiplexer that will accommodate 11 channels. Assume that 
the sources have the following specifications. 

Source 1. Analaog, 2-KHz bandwidth,  Source 2. Analog, 4-KHz bandwidth, Source 3. 
Analog, 2-KHz bandwidth, Sources 4-11. Digital, synchronous at 7200 bits/sec 

2
3A



We also assume that the analog sources will be converted into 4-bit PCM words and, for 
simplicity, that frame sync will be provided via a separate channel and synchronous TDM 
lines are used. To satisfy the Nyquist rate for the analog sources, sources 1,2 and 3 need to be 
sampled at 4,8 and 4 KHz respectively. This can be accomplished by rotating the first 

commutator at 41 f  KHz and sampling source 2 twice on each revolution. This produces a 

16-kilosample/sec TDM PAM signal on the commutator output.Each of the analog sample 
values is converted into a 4-bit PCM word, so that the rate of the TDM PCM signal on the 
ADC output is 64 kbps. The digital data on the ADC output may be merged with the data 

from the digital sources by using a second commutator rotating at 82 f  KHz and wired so 

that the 64-kbps PCM signal is present on 8 of the 16 terminals. This provides an effective 
sampling rate of 64kbps. On the other eight terminals the digital sources are connected to 
provide a data transfer rate of 8kbps for each source. Since the digital sources are supplying a 
7.2-kbps data stream, pulse stuffing is used to raise the source rate to 8kbps. 

The main advantage of TDM is that it can easily accommodate both analog and digital 
sources. However, when analog signals are converted to digital signals without redundancy 
reduction, they consume a great deal of digital system capacity. 

Q 4.7: Consider a PCM TDM system in which 24 signals are to be processed. Each of the 
signals is bandlimited to 3.4 KHz and 8 bits are to be used for each quantized sample. 
Conventional NRZ-L encoding is used and an additional 8-bit sync word is placed in each 
frame. Find out the minimum bandwidth required. 

Soln. The width of the shortest possible pulse needs to be determined in order to find 
out the bandwidth. The sampling rate is  

2 x 3.4 = 6.8 KHz 
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where the value of 24 represents the 24 data plus the sync word for each frame.   

             The bit interval is mS000735.0
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Hence the minimum transmission bandwidth is 272.680
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4.4 Digital PAM Signals 

The PAM pulse train can be represented as 
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where the modulating amplitude kb  represents the k  th symbol in the message sequence, so 

the amplitude belong to a set of M  discrete values. The index k  ranges from   to   

unless otherwise mentioned. The unmodulated pulse  tp  may be rectangular or some other 

shape, subject to the condition 
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This condition is necessary to ensure the recovery of the message signal by sampling  tm  
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The rectangular pulse    /ttp   satisfies the above equation (2) if T , as does any 
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time allocated to one symbol. The signaling rate becomes 
T

r
1

  measured in symbols per 

second or baud. In the binary case, the bit rate becomes 

b
b T

r
1

  

 

 

 

 

 

Fig 4.1. Flat Top sampling 

In order to derive the power spectrum of the binary PAM waveform, under the assumption of 
independent and identically distributed (i.i.d) bits, we write 
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As the rectangular pulse has a power spectrum of fTcT 2sin , the power spectrum of the 

binary PAM signal becomes 
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This is true if the PAM waveform has a mean value of zero. For a nonzero mean, the 
expression becomes 

  222 sin bb mfTcTfG    

where bm  is its mean value.  For unipolar signal formats, the ensemble average is given by 

the following autocorrelation function 

   nkkb bbEnR   

For a digital PAM signal having a pulse spectrum  fP  and amplitude autocorrelation 

function  nRb , the power spectrum becomes 
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For the case of uncorrelated symbols with a nonzero mean, we obtain 
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Use of Poisson’s sum formula gives us 
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This result shows that the power spectrum of a digital PAM signal has impulses at harmonics 

of the signaling rate r , unless the mean is zero or   0fP  at all values of frequency. It is 

apparent from the above discussion that a synchronization signal can be obtained by applying 

 tm  to a narrow BPF centered at one of these harmonic frequencies. The average power is 

obtained by integrating  fG  over all f . Hence, 2m  



For PTM Signals, under the assumption of uniform sampling, the duration of the k  th pulse 
is 

  sk kTm  10  

in which the unmodulated duration 0  represents   0skTm  and the modulation index   

controls the amount of duration modulation. The condition  skTm1  ensures no missing or 

negative pulses. The PPM pulses have fixed duration and amplitude and hence, unlike PAM 
and PWM, they do not suffer from the drawback of missing or negative pulses. The k  th 
pulse in a PPM signal begins at a time 

 sdsk kTmttkTt 0  

in which the unmodulated position ds tkT   represents  0skTm  and the constant 0t

controls the placement of the modulated pulse. Let us consider rectangular pulses with 

amplitude A  centered at skTt   in order to have an informative approximation for the PWM 

waveform and let us further assume that k  varies slowly from pulse to pulse. Then the 

spectrum for these natural sampled waveform is 

      





1

0 cossin
2

1
n

ssp tntn
n

A
tmAftm 


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where     tmft s   10 . From this equation, we observe that the PWM signal has a dc 

component in addition to the message signal and phase modulated waves at the harmonics of 

the sampling frequency sf . The phase modulation has negligible overlap in the message 

band when sT0  so that the message signal can be recovered by lowpass filtering with a 

DC block. 

 

Fig 4.2. Generation of PWM and PPM 

A very popular IC NE 555 has been used to generate PWM (PDM/PTM) and PPM signals is 
shown in Fig.4.3. (Students are encouraged to analyze the operation of this circuit and see 
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how it generates a waveform whose width or duration is modified according to a message or 
modulating signal). 

 

Fig. 4.3 An IC (NE 555 timer) based PWM modulator 

Once we are able to generate a PWM signal, generation of a PPM signal is rather easier as it 
can be carried out by a differentiating circuit. 

 

Fig. 4.4 PPM Modulator from PWM modulator 

Message recovery in a PWM signal can also be carried out by converting the pulse-time 
modulation to pulse-amplitude modulation. To do so, we need to generate a ramp signal such 
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as shown in Fig.4.5. This waveform is seen to start at time skT  and stops at kt , restarts at 

  sTk 1 . Both the start and stop epochs can be obtained from the edges of a PWM waveform 

whereas a PPM waveform must have an auxiliary synchronization signal for the start epoch. 

 

Fig. 4.5 A PWM Demodulator 

The operation of the circuit is explained as follows. The BJT Q1 acts as an inverter. The 
transistor Q2 hence remains cut off during the high going portions of the incoming PWM 
signal. This allows the capacitor C  to get charged towards the biasing voltage through the 

resistor R . The time constant RC is so chosen that before it can charge to ccV , the next 

pulse of the input signal arrives. If it is high, then Q2 goes to the saturation condition which 
makes the capacitor discharge through the ‘ON’ transistor Q2. The output at the collector of 
this transistor is, therefore a swatooth kind of waveform whose envelope follows the 
modulating signal. The second order low pass filter realized by the operational amplifier 
helps to recover the message or the modulating signal from this sawtooth waveform.   
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MODULE-V 

NOISE IN ANALOG MODULATED SYSTEMS 

5.1 Noise in AM receivers with envelope detection 

The received signal at the envelope detector input consists of the modulated signal  tm  at IF 

and the narrowband noise  tn . This narrowband noise  tn  is typically expressed in terms of 

its inphase component  tnI and the quadrature phase component  tnQ . Thus the received 

signal  tr  becomes, 

                  tftntftntftmmAtntmtr cQcIcac  2sin2cos2cos1   

                            =           tftntftntmmAA cQcIacc  2sin2cos   

Thus, the envelope of the received signal becomes 

     trty         2
1

22 tntntmmAA QIacc   

The signal  ty  represents the output of an ideal envelope detector. The phase of the received 

signal is not of any interest to the envelope detector as it responds to the envelope of the 
received signal only and not to the phase changes. From the expression of the envelope, we 
note that it is the vector sum of two noisy components; one is the desired signal plus the 
inphase noise while the second term is noise only. In order to recover the original signal, we 

may immediately see that, the term  ty  needs a simple manipulation as follows. Expansion 

of this term as a binomial expression and subsequent dropping of higher order terms give us 

     trty              tntntntmmAAtntmmAA QQIaccIacc   ...
2

1 22
1

 

When the average carrier power is large compared with the average noise power, so that the 

receiver is operating satisfactorily, the signal term is usually larger than the noise terms  tnI  

and  tnQ , most of the time. The second term in the RHS is usually very small compared to 

the first term and so the other terms following this in the series. Thus, the envelope of the 
received signal, is approximated as, to a good extent 

     trty    tntmmAA Iacc   

The presence of the dc or the constant term cA  in the envelope detector is due to the 

demodulation of the transmitted carrier. This term may be neglected as it does not contribute 
to the original message signal. This term may be removed simply by means of a blocking 
capacitor. We note that, the output of the envelope detector is the original signal, except for 



the scaling factor. Thus, the signal-to-noise ratio, at the envelope detector output is expressed 
as 

 
0

22

, 2WN

PmA
SNR ac

AMo   

This expression is valid subject to the following conditions: 

a) The noise at the receiver input is small compared to the carrier 
b) The modulation index satisfies 1am  

The figure of merit for an AM receiver is thus, 
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5.2 Noise in Angle Modulated Systems 

An angle modulated carrier, in general, is expressed as 

    ttAtx ccc   cos  

where    tmkt p  for PM and      dmkt
t

f 


  for FM 

As we have noted from the discussion on noise in AM systems, the noise appearing at the 
output of the IF amplifier which is also the input to the demodulator is a bandpass noise with 

a PSD of  fGn  and bandwidth equal to that of the IF amplifier; i.e.  Bf 2 .  

This bandpass noise can be expressed in terms of the quadrature components as 

      ttnttntn cQcI  sincos   

where  tnI  and  tnQ  are both low pass signals of bandwidth   Bf 2 . This noise can 

also be represented in terms of an envelope and phase as       tttEtn ncn   cos .  

Due to the nonlinear nature of angle modulation, superposition can not be applied. However, 
in special cases, the noise output is calculated by assuming the signal component to be zero. 
We derive the first the results for PM and extend these to the FM case. 

5.3 Phase Modulation 

The narrow-band modulation is assumed to be approximately linear. Therefore, we undertake 
the case of wideband frequency modulation. For such wide-band modulation, the signal 

changes very slowly compared to noise  tn . The modulating signal bandwidth is B , and the 

noise bandwidth is  Bf 2  with Bf  . Thus, the phase and the frequency variations of 

the modulated carrier are much slower than are the variations of   tn . The modulated carrier 



appears to have constant frequency and phase over several cycles, and hence, the carrier 
appears to be unmodulated.  We, may therefore calculate the output noise by assuming the 
message signal to be zero or a constant. This is a qualitative argument for the linearity of 
wideband angle modulated signals. We outline a quantitative analysis as detailed below.    

The demodulator input corresponding to phase modulation is given by 
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Fig. 5.1. Phasor diagram of the noisy FM signal appearing at the discriminator input 

Expansion of this term gives us 

             tttttEttttAtr ncncnccc  sin.sincos.cossin.sincos.cos   

Arranging the carrier terms of the above expression, we have 

                tttEtAtttEtAtr cnnccnnc  sinsinsincoscoscos   

Therefore, 

        2122 cos2 ttEAEAtR nncnc   , 
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   tmkt p  for phase modulation. The resultant can also be written as 

      
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We are interested in analyzing the effect of additive noise on the phase angle of the signal 
appearing at the discriminator input. The envelope term appearing in the above expression is 
not of any interest to us as information resides in the phase of the modulated signal. Hence, 
any change in the phase of the signal at the discriminator input due to noise is likely to bring 
about a change to the original signal. As this analysis is quite involved, we seek to simplify 
this by making reasonable assumptions about the SNR at the discriminator input. We 
consider the case of large SNR first. Under this situation, the phasor diagram corresponding 
to the actual phase, the extra phase shift introduced due to the additive noise is illustrated in 
Fig.    

From Fig.5.1,   

        tRttEt n  sinsin   

where      ttt n    

For small noise case,   cn AtE   almost always,  
2

  t  for almost all t  and the 

resultant  tR is approximated as 

  cAtR   

therefore,  

          tRttEtt n  sinsin   
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The discriminator detects the phase of the input and gives an output proportional to 
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We observe from the above expression that, the noise has affected the phase of the modulated 
signal by adding one term to the original phase. As we have assumed the phase corresponding 

to the message signal to vary slowly than the  tn  term, we approximate  t  by a constant 

 . Therefore, 
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The two quadrature components of white noise are uncorrelated to each other. Hence, the 
PSD corresponding to these two terms is 

     
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This is because the PSDs corresponding to the two quadrature components are assumed to be 
equal. 

For a white channel noise the PSDs are equal to  





 


otherwise

Bff
AfS c

0

2



  

The demodulated noise bandwidth is Bf  . However, the useful signal bandwidth is only 

B  as the demodulated output passes through a low pass filter of cutoff frequency B to 
remove the out of band noise. Thus, the PSD of the low pass filter output noise is 
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The output noise power, is, therefore, 
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The signal power observed at the output of the demodulator is 
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The output SNR, of a PM receiver is therefore, 
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These results are valid for small noise case and apply to both NBPM and WBPM. For PM, 
the maximum frequency deviation is expressed as 

,
ppmkf   where  
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.
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Substitution of these in the output SNR gives us 
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5.4 Noise in FM Systems 

Frequency modulation can be viewed as a special kind of phase modulation, where the 

modulating signal is    dm
t




as illustrated in Fig.  At the receiver, we demodulate FM with 

a PM demodulator followed by a differentiator. The PM demodulator output is    dmk
t

f 


. 

The subsequent differentiator gives an output of the form  tmk f , so that we have, for the 

output signal power 

 22
0 tmkS f  

The phase demodulator output noise is identical to the one derived in the previous section 

with a PSD equal to 
2
cA


 for white channel noise. This noise is passed through an ideal 

differentiator that has a transfer function equal to fj 2 . Hence the PSD of the output noise is 
2

2 fj   times the input PSD. We, therefore, write 
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The output noise power is, hence, 
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Hence, the output SNR is 
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The transmission bandwidth is about f2 . Hence, for each doubling of the bandwidth, the 

output SNR increases by 6 dB. Unlike PM, the output SNR does not increase indefinitely 
because of the appearance of threshold. This is because an increase in bandwidth results in a 



correspondingly increased noise power creeping into the system compared to the carrier 
power resulting in threshold.  

For tone modulation, 
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The output SNR in dB is plotted in Fig. as a function of   (also in dB) for various values of 

 . The dotted portion of the curve indicates the threshold region. Although the graphs in Fig. 

are valid for tone modulation only, they can be used for any other modulating signal simply 

by shifting them vertically by a factor of 
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observe that FM is superior to PM by a factor of 3 dB. This does not mean that FM is 
superior to PM for other modulating signals as well. In fact, PM is better than FM for most 
practical signals. We write, 
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Thus, we observe that PM is better than FM from the output SNR point of view under the 

condition of  2pBm > 
2'3 pm . If the PSD of the message signal is concentrated at lower 

frequencies, low frequency components predominate it and  '
pm  is small. This favors PM. 

Thus, in general, PM is better than FM for message signals having predominant low 
frequency components (like the video signal) and FM is better than PM for message signals 
that have an abundance of high frequency components. This explains the better SNR of FM 
than PM for tone modulation as all the signal power is concentrated in the highest frequency 
band. But for most of the practical signals, the signal power is usually concentrated at lower 
frequencies and this makes PM a better candidate than FM for the modulation choice. 

 

 

 

 


